小学四年级奥数专题讲座16:数阵图(一)
[06-14 04:14:58] 来源:http://www.89xue.com 四年级数学教学设计 阅读:9252次
摘要:分析与解:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线。经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解。因为第二种情况是螺旋形,故本题的解称为螺旋反幻方。例4将九个数填入左下图的九个空格中,使得任一行、任一列以及两条证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k。如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次。所以有ww。
小学四年级奥数专题讲座16:数阵图(一),标签:四年级数学教学设计方案,http://www.89xue.com
分析与解:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线。经试验有下图所示的三种情况:
按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解。因为第二种情况是螺旋形,故本题的解称为螺旋反幻方。
例4将九个数填入左下图的九个空格中,使得任一行、任一列以及两条
证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k。如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次。所以有
www.89xue.com 九数之和+中心方格中的数×3=4k, 3k+中心方格中的数×3=4k,
注意:例4中对九个数及定数k都没有特殊要求。这个结论对求解3×3方格中的数阵问题很实用。
在3×3的方格中,如果要求填入九个互不相同的质数,要求任一行、任一列以及两条对角线上的三个数之和都相等,那么这样填好的图称为三阶质数幻方。
例5求任一列、任一行以及两条对角线上的三个数之和都等于267的三阶质数幻方。
分析与解:由例4知中间方格中的数为267÷3=89。由于在两条对角线、中间一行及中间一列这四组数中,每组的三个数中都有89,所以每组的其余两数之和必为267-89=178。两个质数之和为178的共有六组:
5+173=11+167
=29+149=41+137
=47+131=71+107。
经试验,可得右图所示的三阶质数幻方。
练习16
1.将九个连续自然数填入3×3的方格内,使得每一横行、每一竖列及两条对角线上的三个数之和都等于66。
2.将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方。
3.用2,4,6,12,14,16,22,24,26九个偶数编制一个幻方。
4.在下列各图空着的方格内填上合适的数,使每行、每列及每条对角线上的三数之和都等于27。
5.将右图中的数重新排列,使得每行、每列及两条对角线上的三个数之和都相等。
6.将九个质数填入3×3的方格内,使得每一横行、每一竖列及两条对角线上的三个数之和都等于21。
7.求九个数之和为657的三阶质数幻方。
分析与解:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线。经试验有下图所示的三种情况:
www.89xue.com 九数之和+中心方格中的数×3=4k, 3k+中心方格中的数×3=4k,
Tag:四年级数学教学设计,四年级数学教学设计方案,教学设计 - 数学教学设计 - 四年级数学教学设计