用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案七年级数学教案列代数式» 正文

列代数式

[05-16 23:32:12]   来源:http://www.89xue.com  七年级数学教案   阅读:90
摘要:(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x例2 用代数式表示:(1)甲乙两数和的2倍;(2)甲数的 与乙数的 的差;(3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式解:设甲数为a,乙数为b,则(1)2(a+b); (2) a- b; (3)a2+b2;(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)(本题应由学生口答,教师板书完成)此时,教师指出:a与。
列代数式,标签:七年级数学教案模板,http://www.89xue.com

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

  (本题应由学生口答,教师板书完成)

  最后,教师需指出:第4小题的答案也可写成x+16%x

  例2  用代数式表示:

  (1)甲乙两数和的2倍;

  (2)甲数的 与乙数的 的差;

  (3)甲乙两数的平方和;

  (4)甲乙两数的和与甲乙两数的差的积;

  (5)乙甲两数之和与乙甲两数的差的积

  分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

  解:设甲数为a,乙数为b,则

  (1)2(a+b); (2) a- b; (3)a2+b2

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

  (本题应由学生口答,教师板书完成)

  此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

  例3  用代数式表示:

  (1)被3整除得n的数;

  (2)被5除商m余2的数

  分析本题时,可提出以下问题:

  (1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

  (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

  解:(1)3n;   (2)5m+2

  (这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

  例4  设字母a表示一个数,用代数式表示:

  (1)这个数与5的和的3倍;(2)这个数与1的差的 ;

  (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

  分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

  解:(1)3(a+5); (2) (a-1); (3) (5a+7);  (4) a2+ a

  (通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

  例5  设教室里座位的行数是m,用代数式表示:

  (1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

  (2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

  分析本题时,可提出如下问题:

  (1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

  解:(1)m(m+6)个;   (2)( m)m个

  三、课堂练习

  1设甲数为x,乙数为y,用代数式表示:(投影)

  (1)甲数的2倍,与乙数的 的和;  (2)甲数的 与乙数的3倍的差;

  (3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

  2用代数式表示:

  (1)比a与b的和小3的数;    (2)比a与b的差的一半大1的数;

  (3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

  3用代数式表示:

  (1)与a-1的和是25的数;   (2)与2b+1的积是9的数;

  (3)与2x2的差是x的数;    (4)除以(y+3)的商是y的数

  〔(1)25-(a-1); (2) ;   (3)2x2+2; (4)y(y+3)〕

  四、师生共同小结

  首先,请学生回答:

  1怎样列代数式?2列代数式的关键是什么?

  其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

  (1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

  (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

上一页  [1] [2] [3]  下一页


Tag:七年级数学教案七年级数学教案模板教案大全 - 数学教案 - 七年级数学教案
上一篇:代数式的值