二次根式的乘法
③ (4)小题要首先用平方差公式分解成积的形式,才可以用积的算术平方根公式进行化简.
④通过例2可以看出,如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简.
通过例2,我们根据算术平方根的定义,可得出: , , 等结果,于是可以总结出:一般地,有
(a≥0)
关于a<0时, ,这种情况将在本章最后一小节专门研究.
例3 化简:
(1) ; (2)
分析:由例3,让学生注意,在本章中,未加特别说明时,字母一般表示正数,但在实际问题中不一定非是正数不可,如第(1)小题,a可以是负数,根据学生实际情况,可适当引导学生展开小组的讨论,渗透分类讨论的思想.
解:(1)
(2)
说明:x2+y2这个式子不能再开方了,进一步强调积的算术平方根公式的特点.
例4 如右图,在△ABC中,∠C=90°,4C=10cm,BC=24cm.求AB.
解:∵ AB2=AC2+BC2
∴
(cm)
答:AB长26cm.
(三)小结
1.本节课讲了积的算术平方根的性质
(a≥0,b≥0).
通过分式的应用,让学生进一步总结,为什么必须有a≥0、b≥0这个条件,而没有这个条件上述性质不成立.
问学生:当a<0,b<0, 也有意义,为什么一定要a≥0、b≥0呢?
引导学生说出:若a<0,b<0, , 在实数范围内没有意义. 公式显然不成立.
2.利用积的算术平方根的性质,化简二次根式的方法.
3.结合几何课学习的勾股定理,提高学生解决实际问题的能力.
(四)练习
1. 化简:
(1) ; (2) ;
(3) ; (4) ;
(5) ; (6) ;
(7) ; (8)
2. 计算:
(1) ; (2) ;
(3) ; (4)
3.已知一个直角三角形的斜边c=21,一条直角边b=4,求另一条直角边a.
六、作业
教材P.177习题11.2; A组1、2、3、4、5.
七、板书设计
《二次根式的乘法》出自:www.89xue.com网