用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案八年级数学教案线段的垂直平分线» 正文

线段的垂直平分线

[05-16 23:45:02]   来源:http://www.89xue.com  八年级数学教案   阅读:90
摘要:研究的内容. 这一过程,完全由学生自己通过小组的形式,代表到台前讲解. 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 强调说明:定理与逆定理的联系与区别相同点:结构相同、证明方法相同不同点:用途不同,定理是用来证线段相等4、定理与逆定理的应用(1)讲解例1(投影例1)例1如图,△ABC中,∠C= ,∠A= ,AB的在垂线交AC于D,交AB于E求证:AC=3CD证明:∵DE垂直平分AB∴AD=BD∴∠1=∠A= ∵ ∴∠2= ∴CD= BD∴CD= AD∴AD=2CD即AC=3CD讲解例2(投影例2)例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为 ,求底角B的大小。
线段的垂直平分线,标签:八年级数学教案模板,http://www.89xue.com
研究的内容.

  这一过程,完全由学生自己通过小组的形式,代表到台前讲解.

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

  强调说明:定理与逆定理的联系与区别

  相同点:结构相同、证明方法相同

  不同点:用途不同,定理是用来证线段相等

  4、定理与逆定理的应用

  (1)讲解例1(投影例1)

  例1 如图,△ABC中,∠C= ,∠A= ,AB的在垂线交AC于D,交AB于E

  求证:AC=3CD

  证明:∵DE垂直平分AB

   ∴AD=BD

   ∴∠1=∠A=

   ∵

   ∴∠2=

   ∴CD= BD

   ∴CD= AD

   ∴AD=2CD

   即AC=3CD

  讲解例2(投影例2 )

  例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为 ,求底角B的大小.

  (学生思考、分析、讨论,教师巡视,适当参与讨论)

  解:(1)当AB的中垂线MN与AC相交时,如图(1),

   ∵∠ADE= ,∠AED=

   ∴∠A= -∠AED= - =

   ∵AB=AC ∴∠B=∠C

   ∴∠B=

  (2)当的中垂线与的延长线相交时,如图(2)

   ∵∠ADE= ,∠AED=

   ∴∠BAE=-∠AED=-=

   ∵AB=AC ∴∠B=∠C

   ∴∠B=

  例3 (1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A= ,求∠NMB的大小

  (2)如果将(1)中∠A的度数改为 ,其余条件不变,再求∠NMB的大小

  (3)你发现有什么样的规律性?试证明之.

  (4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改

  解:(1)∵AB=AC

   ∴∠B=∠ACB

   ∴∠B=

   ∵∠BNM=

   ∴

  (2)如图,同(1)同理求得

  (3)如图,∠NMB的大小为∠A的一半

  5、课堂小结:

  (1)线段垂直平分线性质定理和逆定理

  (2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.

  6、布置作业:

  书面作业P119#2、3

  思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高

  求证:AD垂直平分EF

  证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC

   ∴DE=DF

   ∴D在线段EF的垂直平分线上

   在Rt△ADE和Rt△ADF中

   

   ∴Rt△ADE≌Rt△ADF

   ∴AE=AF

   ∴A点也在线段EF的垂直平分线上

   ∵两点确定一条直线

   ∴直线AD就是线段EF的垂直平分线

  板书设计



《线段的垂直平分线》出自:www.89xue.com网

上一页  [1] [2] 


Tag:八年级数学教案八年级数学教案模板教案大全 - 数学教案 - 八年级数学教案