可化为一元一次方程的分式方程
[05-16 23:45:48] 来源:http://www.89xue.com 八年级数学教案 阅读:90次
摘要:像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.例1、解方程 对于例题给学生示范做题的格式、步骤. (投影显示步骤格式)解:方程两边同乘x(x-2),约去分母,得5(x-2)=7x解这个整式方程,得x=5.检验:把x=-5代入最简公分母x(x。
可化为一元一次方程的分式方程,标签:八年级数学教案模板,http://www.89xue.com
像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.
《可化为一元一次方程的分式方程》出自:www.89xue.com网
像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.
注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验.
由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根.如能保证求解过程正确,则这种验根方法比较简便.
例1、解方程
对于例题给学生示范做题的格式、步骤. (投影显示步骤格式)
解:方程两边同乘x(x-2),约去分母,得
5(x-2)=7x解这个整式方程,得
x=5.
检验:把x=-5代入最简公分母
x(x-2)=35≠0,
∴x=-5是原方程的解.
例2、解方程
解:方程两边同乘最简公分母(x-2),约去分母,得
1=x-1-3(x-2). ( -3这项不要忘乘)
解这个整式方程,得
x=2.
检验:当x=2时,代入最简公分母(x-2)=0,
∴x=2是增根,
∴原方程无解.
注意:要求学生一定要严格按解题格式步骤完成.
(三)总结
解分式方程的一般步骤:
1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.
2.解这个整式方程.
3.把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.
(四)练习
教材P.98中1由学生在黑板上写,教师订正.
六、作业
教材P.101中1.
七、板书设计
《可化为一元一次方程的分式方程》出自:www.89xue.com网
Tag:八年级数学教案,八年级数学教案模板,教案大全 - 数学教案 - 八年级数学教案
上一篇:平方根