第四册角的平分线
[05-16 23:50:17] 来源:http://www.89xue.com 八年级数学教案 阅读:90次
摘要:(l)求证:F到AB,BC和 AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找△ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。(3)引导学生对题目的条件。
第四册角的平分线,标签:八年级数学教案模板,http://www.89xue.com
(l)求证:F到AB,BC和 AC边的距离相等;
(2)求证:AF平分∠BAC;
(4)怎样找△ABC内到三边距离相等的点?
(5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?
说明:
(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.
(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。
(3)引导学生对题目的条件进行类比联想(第(5)题),观察结论如何变化,培养发散思维能力.
练习 3已知:如图 3-88,在四边形 ABCD中, AB=AD, AB⊥BC,AD⊥DC.求证:点 C在∠DAB的平分线上.
Tag:八年级数学教案,八年级数学教案模板,教案大全 - 数学教案 - 八年级数学教案
上一篇:第四册一元二次方程根与系数的关系