用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案八年级数学教案第三册三角形的中位线» 正文

第三册三角形的中位线

[05-16 23:50:59]   来源:http://www.89xue.com  八年级数学教案   阅读:90
摘要:AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).由此引出课题.二、证明猜想,形成定理1.定义三角形的中位线,强调它与三角形的中线的区别.2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.3.板书一种证明过程.4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.5.分析定理成立的条件、结论及作用.条件:连结。
第三册三角形的中位线,标签:八年级数学教案模板,http://www.89xue.com
AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).

由此引出课题.

二、证明猜想,形成定理

1.定义三角形的中位线,强调它与三角形的中线的区别.

2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.

教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.

3.板书一种证明过程.

4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

5.分析定理成立的条件、结论及作用.

条件:连结两边中点得到中位线.

结论有两个,即位置关系和数量关系,根据题目需要选用.

作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.

三、应用举例、变式练习

(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.

(1)       已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;

(2)       如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;

(3)       如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?

分析:

(1)       可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.

(2)       通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.

上一页  [1] [2] [3] [4]  下一页


Tag:八年级数学教案八年级数学教案模板教案大全 - 数学教案 - 八年级数学教案