第三册三角形的中位线
AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义三角形的中位线,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.