用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案九年级数学教案切线长定理» 正文

切线长定理

[05-17 00:01:36]   来源:http://www.89xue.com  九年级数学教案   阅读:90
摘要:∴AC⊥AB∴AC∥OP (学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、B∴PA=PB∠APO=∠BPO ∴AD=BD 又∵BO=DO∴OD是△ABC的中位线∴AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、B∴PA=PB∴ OP ⊥AB∴ = ∴∠C=∠POB∴AC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、 圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1填空如图,已知⊙O的半径为3。
切线长定理,标签:九年级数学教案模板,http://www.89xue.com

   ∴AC⊥AB

   ∴AC∥OP (学生板书)

  证法二.连结AB,交OP于D

   PA,PB分别切⊙O于A、B

   ∴PA=PB∠APO=∠BPO  

   ∴AD=BD

   又∵BO=DO

   ∴OD是△ABC的中位线

   ∴AC∥OP

  证法三.连结AB,设OP与AB弧交于点E

   PA,PB分别切⊙O于A、B

   ∴PA=PB

   ∴ OP ⊥AB

   ∴ =

   ∴∠C=∠POB

   ∴AC∥OP

  反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.
 例2 圆的外切四边形的两组对边的和相等.

  (分析和解题略)

  反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.

  P120练习:

  练习1 填空

  如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________

  练习2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.

  分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z的方程组,解方程组便可求出结果.

  (解略)

  反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.

  (三)小结

  1、提出问题学生归纳

  (1)这节课学习的具体内容;

  (2)学习用的数学思想方法;

  (3)应注意哪些概念之间的区别?

  2、归纳基本图形的结论

  3、学习了用代数方法解决几何问题的思想方法.

  (四)作业

  教材P131习题7.4A组1.(1),2,3,4.B组1题.

探究活动

图中找错

  你能找出(图1)与(图2)的错误所在吗?

  在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.

  

  提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.

  在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有

   a= P1A= P1P3+P3A= P1P3+ c  ①

   c= P3C= P2P3+P3A= P2P3+ b  ②

   a= P1B= P1P2+P2B= P1P2+ b  ③

   将②代人①式得

   a = P1P3+(P2P3+ b)= P1P3+P2P3+ b,

   ∴a-b= P1P3+P2P3

   由③得a-b= P1P2

   ∴P1P2= P2P3+ P1P3

   ∴P1、P 2 、P3应重合,故图2是错误的.



《切线长定理》出自:www.89xue.com网

上一页  [1] [2] 


Tag:九年级数学教案九年级数学教案模板教案大全 - 数学教案 - 九年级数学教案
上一篇:弦切角