用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案九年级数学教案圆的内接四边形» 正文

圆的内接四边形

[05-17 00:01:53]   来源:http://www.89xue.com  九年级数学教案   阅读:90
摘要:说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决. ②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.巩固练习:教材P98中1、2.(五)小结知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.思想方法:①“特殊——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.(六)作业:教材P101中15、16、17题;教材P102中B组5题.探究活动问题: 已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙A上(不与B、C重合)一点,直。
圆的内接四边形,标签:九年级数学教案模板,http://www.89xue.com

  说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.

  ②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.

  巩固练习:教材P98中1、2.

  (五)小结

  知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.

  思想方法:①“特殊——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.

  (六)作业:教材P101中15、16、17题;教材P102中B组5题.

探究活动

  问题: 已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙A上(不与B、C重合)一点,直线BD与⊙O相交于点E.试问:当点D在⊙A上运动时,能否判定△CED的形状?说明理由.

  分析  要判定△CED的形状,当运动到BD经过⊙A的圆心A时,此时点E与点A重合,可以发现△CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠D及∠CED的大小保持不变,△CED的形状保持不变.

  

  提示:分两种情况

  (1)当点D在⊙O外时.证明△CDE∽△CAD’即可

  (2)当点D在⊙O内时. 利用圆内接四边形外角等于内对角可证明△CDE∽△CAD’即可

  说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换;

  (2)本题为图形形状判定型的探索题,结论的探索同样运用图形运动思想,证明结论将一般位置转化成特殊位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法;

  (3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证明方法不同时,也要进行分类讨论.本题中,如果将直线BD运动到使点E在BD的反向延长线上时,
△CDE仍然是等腰三角形.


 



《圆的内接四边形》出自:www.89xue.com网

上一页  [1] [2] 


Tag:九年级数学教案九年级数学教案模板教案大全 - 数学教案 - 九年级数学教案