用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案九年级数学教案正弦和余弦» 正文

正弦和余弦

[05-17 00:02:18]   来源:http://www.89xue.com  九年级数学教案   阅读:90
摘要: 1 06.教法建议:(1)联系实际,提出问题通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.(2) 动手度量、总结规律、给出定义以含 的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律: ,再进一步对含 的。
正弦和余弦,标签:九年级数学教案模板,http://www.89xue.com

1

0

  6.教法建议:

  (1)联系实际,提出问题

  通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.

  (2) 动手度量、总结规律、给出定义以含 的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律: ,再进一步对含 的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到 ,这时,应当即给出 的正弦的定义及符号,即 ,再对照图形,分别用a、b、c表示 、 、 的对边,得出 及 , 就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.

  (3)加强数形结合思想的教学

  “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.

第一课时

  一、教学目标

  1. 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。

  2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。

  3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

  二、学法引导

  1.教学方法:引导发现和探索研究相结合,尝试成功教法。

  2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。

  三、重点、难点、疑点及解决办法

  1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。

  2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。

  3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。

  4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。

  四、教具准备

  自制投影片,一副三角板

  五、教学步骤

  (一)明确目标

  1.如图,长5米的梯子架在高为3米的墙上,则 、 间距离为多少米?

  2.长5米的梯子以倾斜角 为30°靠在墙上,则 、 间的距离为多少?

  3.若长5米的梯子以倾斜角40°架在墙上,则 、 间距离为多少?

  4.若长5米的梯子靠在墙上,使 、 间距离为2米,则倾斜角为多少度?

  前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。

上一页  [1] [2] [3] [4]  下一页


Tag:九年级数学教案九年级数学教案模板教案大全 - 数学教案 - 九年级数学教案
上一篇:正切和余切