频率分布
2.决定组距与组数
将一批数据分组,一般数据越多,分的组数也越多,经验法则是:当数据在100个以内
时,按照数据的多少,常分成5~12组.
组距是指每个小组的两个端点之间的距离.
如果取组距为3厘米,那么由于在这批数据中, ,要将数据分成8组;如果取组距为2厘米,那么由于 ,要分成12组,因为当数据个数接近100时,组数接近12,而这里的数据个数是60,因此分成8组更合适些,于是取定组距为3厘米,组数为8.
教师要说明,在分组的问题上,不是分这么多组就行,分那么多组就不行的问题,而是怎样分组更合适一些的问题.
3,决定分点
教师引导学生观察、分析若将数据按照3厘米的组距分组时,可分成怎样的8组,会出现什么问题?如何解决?(师生共同完成)可以分成以下8组:146~149,149~152,152~155,155~158,158~161,161~164,164~167,167~170.
这时有些数据(如149、158、167)本身就是分点,不好决定它们究竟应该属于哪一组,为避免出现这种情况,可以使分点比数据多一位小数,并且把第1组的起点稍微减小一点.例如,可以将第1组的起点定为145.5,这样,所分的8个小组是:
145.5~148.5,148.5~151.5,151.5~154.5,154.5~157.5,157.5~160.5,160.5~163.5,
163.5~166.5,166.5~169.5.
4.列频率分布表
(用幻灯出示表格)
把学生分成三人一组,用选举时唱票的方法,对落在各个小组内的数据进行累计,教师
要提醒学生应认真仔细,分工合作,在根据频数累计的结果在表中填出相应的频数后,要将
各频数相加,看看它们的和是否等于数据的总个数,如果不相等,说明前面出现了差错,需要进行检查.在根据各组的频数算出相应的频率之后,也要根据各组的频率之和是否等于回来检查求频率的计算过程是否有错.
在学生列出频率分布表后,教师指出,这时我们就可以知道这些数据在各个小组内所占
的比的大小了.而为了将频率分布表中的结果直观形象地表示出来,通常还要进行第五步——画出频率分布直方图,而这将在下一课介绍.
这样做使学生通过动脑、动手参与教学活动,不仅能了解频率分布的意义,而且能掌握
做出一组数据的频率分布的步骤和要求.
课堂练习 教材P187中1,(只要求列出频率分布表)2.
(四)总结、扩展
知识小结:通过本节课的学习,使我们知道在许多问题中,只知道样本和总体的平均水平和波动大小还不够,还需要知道其分布规律,以便能全面掌握样本和总体的情况,所以我们要对一组数据进行整理,以便得到它的频率分布.
方法小结:获得一组数据的频率分布的五个步骤:1.计算最大值与最小值的差;2.决定组距与组数;3.决定分点;4.列出频率分布表;5.画出频率分布直方图.
布置作业
教材P189中2,3(列出频率分布表)
板书设计
14.5 频率分布(一)
整理数据的五个步骤:
1.计算最大值与最小值的差
2.决定组距与组数
3.决定分点
4.列频率分布表
5.画出频率分布直方图
频率分布(二)
一、教学目的
1.使学生深刻理解频率的概念,掌握样本频率分布的求法.
2.对学生进行由实践到理论,由理论到实践的认识规律的教育.
二、教学重点、难点
重点:列频率分布表和作频率分布直方图.
难点:确定组距与组数和决定分点.
三、教学过程
复习提问
我们已经了解了已知一组数据即某总体的样本,列出样本的频率分布表,作频率分布直方图的方法.请叙述此类题目的解法.
新课
例 为了考察某种大麦穗长的分布情况,在一块试验地里抽取了100个穗,量得它们的长度如下(单位:厘米):