理想气体状态方程(1)
1.000
1.0690
1.1380
1.3565
1.7200
1.000
0.9941
1.0483
1.3900
2.0685
1.000
0.9265
0.9140
1.1560
1.7355
1.000
0.9730
1.0100
1.3400
1.9920
说明讲解:投影片(l)所示是在温度为0℃,压强为 Pa的条件下取1L几种常见实际气体保持温度不变时,在不同压强下用实验测出的pV乘积值。从表中可看出在压强为 Pa至 Pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为 Pa时,玻意耳定律就完全不适用了。
这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循玻意耳定律和查理定律。而且不同的实际气体适用的温度范围和压强范围也是各不相同的。为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循玻意耳定律和查理定律。我们把这样的气体叫做“理想气体”。(板书“理想气体”概念意义。)
2.推导理想气体状态方程
前面已经学过,对于一定质量的理想气体的状态可用三个状态参量p、V、T来描述,且知道这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。它们共同表征一定质量理想气体的唯一确定的一个状态。根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为( ),经过某变化过程,到末状态时各状态参量变为( ),这中间的变化过程可以是各种各样的,现假设有两种过程:
第一种:从( )先等温并使其体积变为 ,压强随之变为 ,此中间状态为( )再等容并使其温度变为 ,则其压强一定变为 ,则末状态( )。
第二种:从( )先等容并使其温度变为 ,则压强随之变为 ,此中间状态为( ),再等温并使其体积变为 ,则压强也一定变为 ,也到末状态( ),如投影片所示。
出示投影片(2):
将全班同学分为两大组,根据玻意耳定律和查理定律,分别按两种过程,自己推导理想气体状态过程。(即要求找出 与 间的等量关系。)
基本方法是:解联立方程 或 消去中间状态参量或均可得到:
这就是理想气体状态方程。它说明:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
3.推导并验证盖·吕萨克定律
设问:(1)若上述理想气体状态方程中, ,方程形式变化成怎样的形式?
答案: 或
(2) 本身说明气体状态变化有什么特点?