用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案七年级数学教案绝对值» 正文

绝对值

[05-16 23:31:38]   来源:http://www.89xue.com  七年级数学教案   阅读:90
摘要:三、重点、难点、疑点及解决办法1.重点:给出一个数会求出它的绝对值.2.难点:绝对值的几何意义,代数定义的导出.3.疑点:负数的绝对值是它的相反数.四、课时安排2课时五、教具学具准备投影仪(电脑)、三角板、自制胶片.六、师生互动活动设计教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.七、教学步骤(一)创设情境,复习导入师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.学生活动:一个学生板演,其他学生在练习本上画.【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,。
绝对值,标签:七年级数学教案模板,http://www.89xue.com

  三、重点、难点、疑点及解决办法

  1.重点:给出一个数会求出它的绝对值.

  2.难点:绝对值的几何意义,代数定义的导出.

  3.疑点:负数的绝对值是它的相反数.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪(电脑)、三角板、自制胶片.

  六、师生互动活动设计

  教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

  学生活动:一个学生板演,其他学生在练习本上画.

  【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

  (二)探索新知,导入新课

  师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

  学生活动:思考讨论,很难得出答案.

  师:在数轴上标出到原点距离是6个单位长度的点.

  学生活动:一个学生板演,其他学生在练习本上做.

  师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

  学生活动:产生疑问,讨论.

  师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

  [板书]2.4绝对值(1

  【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识.

  师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6;

      6的绝对值是表示6的点到原点的距离,6的绝对值是6.

  提出问题:(1)-3的绝对值表示什么?

           (2)的绝对值呢?

           (3)的绝对值呢?

  学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答.

  [板书]一个数a的绝对值是数轴上表示数a的点到原点的距离.

  a的绝对值是|a|

  【教法说明】由-6,6,-3,这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点.

  (三)尝试反馈,巩固练习

  师:数可以表示任意数,若把换成,9,0,-1,-0.4观察数轴,它们的绝对值各是多少?

  学生活动:口答:,,,,

  师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值.

  学生活动:按教师要求自己又当“小老师”又当“学生”.

  教师找一组学生回答,并及时纠正出现的错误.

  (出示投影1)

  例  求8,-8,,的绝对值.

  师:观察数轴做出此题.

  学生活动:口答

  ,,,.

  师:由此题目你能想到什么规律?

  学生活动:讨论得出—互为相反数的两数绝对值相同.

  【教法说明】这一环节是对绝对值的几何定义的巩固.这里对于绝对值定义的理解不能空谈“5的绝对值、-7的绝对值是多少”?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念.教师先阐明这个字母可表示任意数,再把换成一组数,学生自己又把换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义.然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念.

上一页  [1] [2] [3] [4] [5]  下一页


Tag:七年级数学教案七年级数学教案模板教案大全 - 数学教案 - 七年级数学教案
上一篇:有理数的加法