不等式的解集
(三)教学过程
1.创设情境,复习引入
(1)根据不等式的基本性质,把下列不等式化成 或 的形式.
① ②
(2)当 取下列数值时,不等式 是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
学生活动:独立思考并说出答案:(1)① ② .(2)当 取1,0,2,-2.5,-4时,不等式 成立;当 取3.5,4,4.5,3时,不等式 不成立.
大家知道,当 取1,2,0,-2.5,-4时,不等式 成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式 不成立的数就不是不等式 的解.
对于不等式 ,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律?
学生活动:思考讨论,尝试得出答案,指名板演如下:
【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式 的解2,0,1,-2.5,-4用“实心圆点”表示,把不是 的解的数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”.
师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式 的解,而大于或等于3的任何一个数都不是 的解.可以看出,不等式 有无限多个解,这无限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式 的无限多个解集中起来,就得到 的解的集会,简称不等式 的解集.
2.探索新知,讲授新课
(1)不等式的解集
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.
①以方程 为例,说出一元一次方程的解的情况.
②不等式 的解的个数是多少?能一一说出吗?
(2)解不等式
求不等式的解集的过程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的则是不等式的解集,为什么?
学生活动:观察思考,指名回答.
教师归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有无限多个,无法一一列举出来,因而只能用不等式 或 揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系.
(3)在数轴上表示不等式的解集
①表示不等式 的解集:( )
分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集 .注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:
②表示 的解集:( )
学生活动:独立思考,指名板演并说出分析过程.
分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:
注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.
【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现.教学时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.
3.尝试反馈,巩固知识
(1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.