用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案七年级数学教案命题» 正文

命题

[05-16 23:36:00]   来源:http://www.89xue.com  七年级数学教案   阅读:90
摘要:如:(1)对顶角相等.(2)等角的余角相等.(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.(4)如果 a>0,b>0,那么a+b>0.(5)当a>0时,|a|=a.(6)小于直角的角一定是锐角.在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.(7)a>0,b>0,a+b=0.(8)2与3的和是4.有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解.4.分析命题的构成,改写命题的形式.例 两条直线平行,同位角相等.(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条。
命题,标签:七年级数学教案模板,http://www.89xue.com

  如:

  (1)对顶角相等.

  (2)等角的余角相等.

  (3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.

  (4)如果 a>0,b>0,那么a+b>0.

  (5)当a>0时,|a|=a.

  (6)小于直角的角一定是锐角.

  在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.

  (7)a>0,b>0,a+b=0.

  (8)2与3的和是4.

  有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解.

  4.分析命题的构成,改写命题的形式.

  例 两条直线平行,同位角相等.

  (l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”.

  (2)改写命题的形式.

  由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等.”

  请同学们将下列命题写成“如果……,那么……”的形式,例:

  ①对顶角相等.

  如果两个角是对顶角,那么它们相等.

  ②两条直线平行,内错角相等.

  如果两条直线平行,那么内错角相等.

  ③等角的补角相等.

  如果两个角是等角,那么它们的补角相等.(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等.)

  以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等.”

  提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出.

  如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:

  “如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.”

  二、分析命题,理解真、假命题

 1.让学生分析两个命题的不同之处.

  (l)若a>0,b>0,则a+b>0.

  (2)若a>0,b>0,则a+b<0.

  相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.

  不同之处:(1)中的结论是正确的,(2)中的结论是错误的.

  教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

  2.给出真、假命题定义.

  真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.

  假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题.

  注意:

  (1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”.显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题.

  (2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。

  (3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题.

  (4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题.

  3.运用概念,判断真假命题.

  例 请判断以下命题的真假.

  (1)若ab>0,则a>0,b>0.

  (2)两条直线相交,只有一个交点.

  (3)如果n是整数,那么2n是偶数.

  (4)如果两个角不是对顶角,那么它们不相等.

  (5)直角是平角的一半.

  解:(l)(4)都是假命题,(2)(3)(5)是真命题.

  4.介绍一个不辨真伪的命题.

  “每一个大于4的偶数都可以表示成两个质数之和”.(即著名的哥德巴赫猜想)

上一页  [1] [2] [3]  下一页


Tag:七年级数学教案七年级数学教案模板教案大全 - 数学教案 - 七年级数学教案