用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案八年级数学教案第四册一元二次方程实数根错例剖析课» 正文

第四册一元二次方程实数根错例剖析课

[05-16 23:50:19]   来源:http://www.89xue.com  八年级数学教案   阅读:90
摘要:正解:D错因剖析:漏掉了方程有实数根的前提是△≥0例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。正解: -1≤k<2且k≠ 例4 (2002山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0上一页 [1] [2] [3] 。
第四册一元二次方程实数根错例剖析课,标签:八年级数学教案模板,http://www.89xue.com
正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得  k<2又∵k+1≥0∴k≥ -1。即 k的取值范

围是 -1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0k= 时,原方程变为一次方程,不可能有两个实根。

正解: -1≤k<2k≠

例4             (2002山东太原中考题) 已知x1x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0

上一页  [1] [2] [3] [4] [5] [6] [7] [8]  下一页


Tag:八年级数学教案八年级数学教案模板教案大全 - 数学教案 - 八年级数学教案