第四册一元二次方程实数根错例剖析课
[05-16 23:50:19] 来源:http://www.89xue.com 八年级数学教案 阅读:90次
摘要:正解:D错因剖析:漏掉了方程有实数根的前提是△≥0例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。正解: -1≤k<2且k≠ 例4 (2002山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0上一页 [1] [2] [3] 。
第四册一元二次方程实数根错例剖析课,标签:八年级数学教案模板,http://www.89xue.com
正解:D
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2
错解: 由△=(-2
围是 -1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=
正解: -1≤k<2且k≠
例4 (2002山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0
上一页 [1] [2] [3] [4] [5] [6] [7] [8] 下一页
Tag:八年级数学教案,八年级数学教案模板,教案大全 - 数学教案 - 八年级数学教案
上一篇:第四册角的平分线