用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案八年级数学教案第四册一元二次方程实数根错例剖析课» 正文

第四册一元二次方程实数根错例剖析课

[05-16 23:50:19]   来源:http://www.89xue.com  八年级数学教案   阅读:90
摘要:错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3 【练习】练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k< ∴当k< 时,方程有两个不相等的实数根。(2)存在。如果方程的两实数根x1、x2互为相反数,则x1。
第四册一元二次方程实数根错例剖析课,标签:八年级数学教案模板,http://www.89xue.com

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 ,  x3=0, x4= -3

 

【练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4 k2>0      解得k<

∴当k< 时,方程有两个不相等的实数根。

(2)存在。如果方程的两实数根x1、x2互为相反数,则x1+ x2= - =0,

 解得k 。经检验k 是方程-

上一页  [1] [2] [3] [4] [5] [6] [7] [8]  下一页


Tag:八年级数学教案八年级数学教案模板教案大全 - 数学教案 - 八年级数学教案