圆和圆的位置关系
2、两圆位置关系的数量特征.
设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)
两圆外切 d=R+r;
两圆内切 d=R-r (R>r);
两圆外离 d>R+r;
两圆内含 d<R-r(R>r);
两圆相交 R-r<d<R+r.
说明:注重“数形结合”思想的教学.
(四)应用、练习
例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米
求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?
(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?
解:(1)设⊙P与⊙O外切与点A,则
PA=PO-OA
∴PA=3cm.
(2)设⊙P与⊙O内切与点B,则
PB=PO+OB
∴PB=1 3cm.
例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.
求证:⊙O与⊙B相外切.
证明:连结BO,∵AC为⊙O的直径,AC=12,
∴⊙O的半径 ,且O是AC的中点
∴ ,∵∠C=90°且BC=8,
∴ ,
∵⊙O的半径 ,⊙B的半径 ,
∴BO= ,∴⊙O与⊙B相外切.
练习(P138)
(五)小结
知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;
②以及这五种位置关系下圆心距和两圆半径的数量关系;
③两圆相切时切点在连心线上的性质.
能力:观察、分析、分类、数形结合等能力.
思想方法:分类思想、数形结合思想.
(六)作业
教材P151中习题A组2,3,4题.
第二课时 相交两圆的性质
教学目标
1、掌握相交两圆的性质定理;
2、掌握相交两圆问题中常添的辅助线的作法;
3、通过例题的分析,培养学生分析问题、解决问题的能力;
4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美.
教学重点
相交两圆的性质及应用.
教学难点
应用轴对称来证明相交两圆连心线的性质和准确添加辅助线.
教学活动设计
(一)图形的对称美
相切两圆是以连心线为对称轴的对称图形.相交两圆具有什么性质呢?
(二)观察、猜想、证明
1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.
2、猜想:“相交两圆的连心线垂直平分公共弦”.
3、证明:
对A层学生让学生写出已知、求证、证明,教师组织;对B、C层在教师引导下完成.
已知:⊙O1和⊙O2相交于A,B.
求证:Q1O2是AB的垂直平分线.
分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B.
证明:连结O1A、O1B、 O2A、O2B,∵O1A=O1B,
∴O1点在AB的垂直平分线上.
又∵O2A=O2B,∴点O2在AB的垂直平分线上.
因此O1O2是AB的垂直平分线.
也可考虑利用圆的轴对称性加以证明:
∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴.
∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O