下学期 4.7 二倍角的正弦、余弦、正切1
[05-17 00:14:21] 来源:http://www.89xue.com 高一数学教案 阅读:90次
摘要: 说明:本题在尝试把正切化为弦(正、余弦)后果然获得成功,其实把正切化为弦就是一条重要思想,请同学们切记“遇切、割化弦”这一规律.另外本题的解答过程还反映了逆用和角公式的重要性.希望大家一并记下.练习(投影)(1)化简 (2) (3)若 ,则 答案:(1) ;(2) ;(3)84.总结提炼(1)在两角和的三角函数公式 、 、 中,当 时,就可以得到二倍角的三角函数公式 、 、 ,说明后者是前者的特例.(2) 、 中角 没有限制条件,而 中,只有 和 时,才成立.(3)二倍角公式不仅限于 是 的二倍形式,其他如 是 的2倍, 是 的二倍, 是 的二倍等等都是适用。
下学期 4.7 二倍角的正弦、余弦、正切1,标签:高一数学教案模板,http://www.89xue.com
说明:本题在尝试把正切化为弦(正、余弦)后果然获得成功,其实把正切化为弦就是一条重要思想,请同学们切记“遇切、割化弦”这一规律.另外本题的解答过程还反映了逆用和角公式的重要性.希望大家一并记下.
《下学期 4.7 二倍角的正弦、余弦、正切1》出自:www.89xue.com网
说明:本题在尝试把正切化为弦(正、余弦)后果然获得成功,其实把正切化为弦就是一条重要思想,请同学们切记“遇切、割化弦”这一规律.另外本题的解答过程还反映了逆用和角公式的重要性.希望大家一并记下.
练习(投影)
(1)化简
(2)
(3)若 ,则
答案:(1) ;(2) ;(3)8
4.总结提炼
(1)在两角和的三角函数公式 、 、 中,当 时,就可以得到二倍角的三角函数公式 、 、 ,说明后者是前者的特例.
(2) 、 中角 没有限制条件,而 中,只有 和 时,才成立.
(3)二倍角公式不仅限于 是 的二倍形式,其他如 是 的2倍, 是 的二倍, 是 的二倍等等都是适用的,要熟悉这些多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键.
有三种形式 ,要依据条件,灵活选用公式.另外,逆用此公式时,更要注意结构形式.
(四)板书设计
二倍角公式
应注意几个问题:
例1
例2
例3
例4
演练反馈
总结提炼
《下学期 4.7 二倍角的正弦、余弦、正切1》出自:www.89xue.com网
Tag:高一数学教案,高一数学教案模板,教案大全 - 数学教案 - 高一数学教案