用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案高一数学教案充分条件与必要条件» 正文

充分条件与必要条件

[05-17 00:16:01]   来源:http://www.89xue.com  高一数学教案   阅读:90
摘要:教学目标(1)正确理解充分条件、必要条件和充要条件的概念;(2)能正确判断是充分条件、必要条件还是充要条件;(3)培养学生的逻辑思维能力及归纳总结能力;(4)在充要条件的教学中,培养等价转化思想. 教学建议 (一)教材分析1.知识结构首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上讲述了充要条件的初步知识.2.重点难点分析本节的重点与难点是关于充要条件的判断.(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件 和结论 之间的因果关系.(2)在判断条件 和结论 之间的因果关系中应该:①首先分清条件是什么,结论是什么;②然后尝试。
充分条件与必要条件,标签:高一数学教案模板,http://www.89xue.com

教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;
  (2)能正确判断是充分条件、必要条件还是充要条件;
  (3)培养学生的逻辑思维能力及归纳总结能力;
  (4)在充要条件的教学中,培养等价转化思想.

教学建议

(一)教材分析

1.知识结构

  首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上讲述了充要条件的初步知识.

2.重点难点分析

  本节的重点与难点是关于充要条件的判断.

  (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件 和结论 之间的因果关系.

  (2)在判断条件 和结论 之间的因果关系中应该:

  ①首先分清条件是什么,结论是什么;

  ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

  ③最后再指出条件是结论的什么条件.

  (3)在讨论条件 和条件 的关系时,要注意:

  ①若 ,但 ,则 的充分但不必要条件;

  ②若 ,但 ,则 的必要但不充分条件;

  ③若 ,且 ,则 的充要条件;

  ④若 ,且 ,则 的充要条件;

  ⑤若 ,且 ,则 的既不充分也不必要条件.

  (4)若条件 以集合 的形式出现,结论 以集合 的形式出现,则借助集合知识,有助于充要条件的理解和判断.

  ①若 ,则 的充分条件;

  显然,要使元素 ,只需 就够了.类似地还有:

  ②若 ,则 的必要条件;

  ③若 ,则 的充要条件;

  ④若 ,且 ,则 的既不必要也不充分条件.

  (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题 逆否命题,逆命题 否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

(二)教法建议

  1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的 与四种命题中的 要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若 ”形式的复合命题.

  2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

  3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

  4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

[1] [2] [3] [4]  下一页


Tag:高一数学教案高一数学教案模板教案大全 - 数学教案 - 高一数学教案
上一篇:映射