用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案高二数学教案数学教案-双曲线的几何性质» 正文

数学教案-双曲线的几何性质

[05-17 00:39:56]   来源:http://www.89xue.com  高二数学教案   阅读:90
摘要:§8.4 双曲线的几何性质(第1课时) ㈠课时目标 1. 熟悉双曲线的几何性质。2. 能理解离心率的大小对双曲线形状的影响。3. 能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。㈡教学过程(www.89xue.com) [情景设置] 叙述椭圆 的几何性质,并填写下表:方程性质 图像 (略) 范围 -a≤x≤a,-b≤y≤b 对称性 对称轴、对称中心 顶点 (±a,0)、(±b,0) 离心率 e= (几何意义) [探索研究] 1.类比椭圆 的几何性质,探讨双曲线 的几何性质:范围、对称性、顶点、离心率。 双曲线的实轴、虚轴、实半轴。
数学教案-双曲线的几何性质,标签:高二数学教案模板,http://www.89xue.com

§8.4  双曲线的几何性质(第1课时)
㈠课时目标 
1. 熟悉双曲线的几何性质。
2. 能理解离心率的大小对双曲线形状的影响。
3. 能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。
㈡教学过程(www.89xue.com)
 [情景设置] 
  叙述椭圆 的几何性质,并填写下表:
方程
性质         
 

图像 (略) 
范围 -a≤x≤a,-b≤y≤b 
对称性 对称轴、对称中心 
顶点 (±a,0)、(±b,0) 
离心率 e= (几何意义)


 [探索研究]
 1.类比椭圆 的几何性质,探讨双曲线 的几何性质:范围、对称性、顶点、离心率。
   双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的定义。
双曲线与椭圆的几何性质对比如下:
    
方程
性质        
 

图像 (略)  (略)
范围 -a≤x≤a,-b≤y≤b x≥a,或x≤-a,y∈R
对称性 对称轴、对称中心 对称轴、对称中心
顶点 (±a,0)、(±b,0) (-a,0)、(a,0)
离心率 0<e= <1
e= >1

下面继续研究离心率的几何意义:
(a、b、c、e关系:c2=a2+b2, e= >1)
2.渐近线的发现与论证
根据椭圆的上述四个性质,能较为准确地把 画出来吗?(能)
根据上述双曲线的四个性质,能较为准确地把 画出来吗?(不能)
通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。
我们能较为准确地画出曲线y= ,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y= 的渐近线。
问:双曲线 有没有渐近线呢?若有,又该是怎样的直线呢?
引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:
y=± =±
当x无限增大时, 就无限趋近于零,也就是说,这是双曲线y=±
与直线y=± 无限接近。
这使我们猜想直线y=± 为双曲线的渐近线。
直线y=± 恰好是过实轴端点A1、A2,虚轴端点B1、B2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。
证法1:如图,设M(x0,y0)为第一象限内双曲线 上的仍一点,则
y0=  ,M(x0,y0)到渐近线ay-bx=0的距离为:
∣MQ∣=  =

                  =   .     
点M向远处运动, x0随着增大,∣MQ∣就逐渐减小,M点就无限接近于 y=
故把y=± 叫做双曲线 的渐近线。
3.离心率的几何意义
∵e= ,c>a, ∴e>1由等式c2-a2=b2,可得 = = =
e越小(接近于1) 越接近于0,双曲线开口越小(扁狭)
 e越大 越大,双曲线开口越大(开阔)
 4.巩固练习
   求下列双曲线的渐近线方程,并画出双曲线。
        ①4x2-y2=4       ②4x2-y2=-4
    已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程
         ①M(4, )   ②M(4, )
[知识应用与解题研究]
例 1   求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。
例2    双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)

[1] [2]  下一页


Tag:高二数学教案高二数学教案模板教案大全 - 数学教案 - 高二数学教案