匀变速直线运动的位移与时间的关系
[07-17 19:26:48] 来源:http://www.89xue.com 高一物理教学设计 阅读:9558次
摘要: 合作交流:物体由A→B做初速度为零的匀加速直线运动,到B点时速度大小为v1;物体由A→C做初速度为零的匀加速直线运动,加速度比AB段的加速度大,由C→D做匀加速直线运动,初速度大小等于AC段的末速度大小,加速度比AB段的加速度小,到D点时的速度大小也为v1(以后会学到),用计算的方法较为烦琐,现画出函数图象进行求解. 根据上述运动过程,画出物体运动的v-t图象如图2-3-8所示,我们获得一个新的信息,根据通过的位移相等知道两条图线与横轴所围“面积”相等,所以沿A→C→D路径滑下用的时间较短,故先到达最低点. 提示:用v-。
匀变速直线运动的位移与时间的关系,标签:高一物理教学设计方案,http://www.89xue.com
合作交流:物体由A→B做初速度为零的匀加速直线运动,到B点时速度大小为v1;物体由A→C做初速度为零的匀加速直线运动,加速度比AB段的加速度大,由C→D做匀加速直线运动,初速度大小等于AC段的末速度大小,加速度比AB段的加速度小,到D点时的速度大小也为v1(以后会学到),用计算的方法较为烦琐,现画出函数图象进行求解.
根据上述运动过程,画出物体运动的v-t图象如图2-3-8所示,我们获得一个新的信息,根据通过的位移相等知道两条图线与横轴所围“面积”相等,所以沿A→C→D路径滑下用的时间较短,故先到达最低点.
提示:用v-t图象分析问题时,要特别注意图线的斜率、与t轴所夹面积的物理意义.(注意此例中纵轴表示的是速率)
课堂训练
“适者生存”是自然界中基本的法则之一,猎豹要生存必须获得足够的食物,猎豹的食物来源中,羚羊是不可缺少的.假设羚羊从静止开始奔跑,经50 m能加速到最大速度25 m/s,并能维持较长的时间;猎豹从静止开始奔跑,经60 m能加速到最大速度30 m/s,以后只能维持这个速度4.0 s.设猎豹在某次寻找食物时,距离羚羊30 m时开始攻击,羚羊则在猎豹开始攻击后1.0 s才开始逃跑,假定羚羊和猎豹在加速阶段分别做匀加速直线运动,且均沿同一直线奔跑,问猎豹能否成功捕获羚羊?(情景导入问题)
解答:羚羊在加速奔跑中的加速度应为:
a1= = ①
不错哦 x= a1t2 ②
由以上二式可得:a1= =6.25 m/s2,同理可得出猎豹在加速过程中的加速度a2= = =7.5 m/s2.羚羊加速过程经历的时间t1= =4 s.猎豹加速过程经历的时间t2= =4 s.
如果猎豹能够成功捕获羚羊,则猎豹必须在减速前追到羚羊,在此过程中猎豹的位移为:x2=x2+v2t=(60+30×4) m=180 m,羚羊在猎豹减速前的位移为:x1=x1+v1t′=(50+25×3) m=125 m,因为x2-x1=(180-125) m=55 m>30 m,所以猎豹能够成功捕获羚羊.
课堂小结
本节重点学习了对匀变速直线运动的位移—时间公式x=v0t+ at2的推导,并学习了运用该公式解决实际问题.在利用公式求解时,一定要注意公式的矢量性问题.一般情况下,以初速度方向为正方向;当a与v0方向相同时,a为正值,公式即反映了匀加速直线运动的速度和位移随时间的变化规律;当a与v0方向相反时,a为负值,公式反映了匀减速直线运动的速度和位移随时间的变化规律.代入公式求解时,与正方向相同的代入正值,与正方向相反的物理量应代入负值.
布置作业
1.教材第40页“问题与练习”第1、2题.
2.利用课余时间实际操作教材第40页“做一做”的内容.
板书设计
3 匀变速直线运动的位移和时间的关系
合作交流:物体由A→B做初速度为零的匀加速直线运动,到B点时速度大小为v1;物体由A→C做初速度为零的匀加速直线运动,加速度比AB段的加速度大,由C→D做匀加速直线运动,初速度大小等于AC段的末速度大小,加速度比AB段的加速度小,到D点时的速度大小也为v1(以后会学到),用计算的方法较为烦琐,现画出函数图象进行求解.
根据上述运动过程,画出物体运动的v-t图象如图2-3-8所示,我们获得一个新的信息,根据通过的位移相等知道两条图线与横轴所围“面积”相等,所以沿A→C→D路径滑下用的时间较短,故先到达最低点.
提示:用v-t图象分析问题时,要特别注意图线的斜率、与t轴所夹面积的物理意义.(注意此例中纵轴表示的是速率)
课堂训练
“适者生存”是自然界中基本的法则之一,猎豹要生存必须获得足够的食物,猎豹的食物来源中,羚羊是不可缺少的.假设羚羊从静止开始奔跑,经50 m能加速到最大速度25 m/s,并能维持较长的时间;猎豹从静止开始奔跑,经60 m能加速到最大速度30 m/s,以后只能维持这个速度4.0 s.设猎豹在某次寻找食物时,距离羚羊30 m时开始攻击,羚羊则在猎豹开始攻击后1.0 s才开始逃跑,假定羚羊和猎豹在加速阶段分别做匀加速直线运动,且均沿同一直线奔跑,问猎豹能否成功捕获羚羊?(情景导入问题)
解答:羚羊在加速奔跑中的加速度应为:
a1= = ①
不错哦 x= a1t2 ②
由以上二式可得:a1= =6.25 m/s2,同理可得出猎豹在加速过程中的加速度a2= = =7.5 m/s2.羚羊加速过程经历的时间t1= =4 s.猎豹加速过程经历的时间t2= =4 s.
如果猎豹能够成功捕获羚羊,则猎豹必须在减速前追到羚羊,在此过程中猎豹的位移为:x2=x2+v2t=(60+30×4) m=180 m,羚羊在猎豹减速前的位移为:x1=x1+v1t′=(50+25×3) m=125 m,因为x2-x1=(180-125) m=55 m>30 m,所以猎豹能够成功捕获羚羊.
课堂小结
本节重点学习了对匀变速直线运动的位移—时间公式x=v0t+ at2的推导,并学习了运用该公式解决实际问题.在利用公式求解时,一定要注意公式的矢量性问题.一般情况下,以初速度方向为正方向;当a与v0方向相同时,a为正值,公式即反映了匀加速直线运动的速度和位移随时间的变化规律;当a与v0方向相反时,a为负值,公式反映了匀减速直线运动的速度和位移随时间的变化规律.代入公式求解时,与正方向相同的代入正值,与正方向相反的物理量应代入负值.
布置作业
1.教材第40页“问题与练习”第1、2题.
2.利用课余时间实际操作教材第40页“做一做”的内容.
板书设计
3 匀变速直线运动的位移和时间的关系
上一页 [1] [2] [3] [4] [5] [6] 下一页
Tag:高一物理教学设计,高一物理教学设计方案,教学设计 - 物理教学设计 - 高一物理教学设计
上一篇:力的分解教案