一元一次不等式和它的解法
1.通过复习一元一次方程的概念及一般解题步骤,为本节课新授一元一次不等式的求解打下良好的坚实基础.
2.通过类比的办法引入一元一次不等式的概念及求解方法.教师一边示范一边提问让学生通过观察、类比从而加深对一元一次不等式求解的理解.
3.通过反复的练习,让学生掌握常见含字母的不等式的求解办法.从而达到熟能生巧的目的.
七、教学步骤
(一)明确目标
本节课将学习一元一次不等式的求解办法,并能熟练地解之.
(二)整体感知
让学生通过类比的方法既复习了一元一次方程的求解,又快捷地掌握一元一次不等式的求解,从而能更好地区分一元一次方程和一元一次不等式的求解过程的差异.
(三)教学过程
1.创设情境,复习引入
(1)提问:①什么叫一元一次方程?
②它的标准形式是什么?
③解一元一次方程的一般步骤是什么?
④一元一次方程一定有解吗?有几个解?
(2)解下列方程:① .
② ,并在数轴上表示它们的解.
(3)指出不等式 的解集,并在数轴上表示出来.
学生活动:第(1)题口答,第(2)题、第(3)题在练习本上完成,指定三个学生板演,完成后由学生判断是否正确.
教师活动:纠正,强调解方程时的常见错误及“· ”与“。”的使用区别.然后指出,解不等式与解一元一次方程相比,最大的区别就是式子两边乘或除以同一个负数时,“不等号”需改变方向,“等号”不改变.除此之外的对式子进行的任何其他变形都是完全相同的.
【教法说明】由于一元一次不等式与一元一次方程在诸多方面都有联系,因此,教学时光复习一元一次方程的有关内容,然后引入一元一次不等式的相应内容,通过仿同求异对比来学习,这样既降低了学习难度,又强化了对新知识的理解.
2.探索新知,讲授新课
大家知道,不等式 的解集是 ,变形的理论依据是不等式基本性质1,相当于解方程的移项法则,实际上,解不等式就是运用不等式的三条基本性质,对不等式进行适当变形(去分母、去括号、移项、合并同类项、化系数为1)最终将不等式变形为 或 的形式,即求出不等式的解集.
大家知道,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,例如 .一元二次方程的标准形式是 .类似地,只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式,例如 .
一元一次不等式的标准形式为 或
注意问题:判断一个不等式是否为一元一次不等式,应先将它化成最简形式,再用定义判断.形如 的不等式不是一元一次不等式,而是矛盾不等式.
解一元一次不等式与解一元一次方程有类似的步骤,但一定要注意当不等式的两边同乘(或除以)同一个负数时,不等号要改变方向.
例1 解不等式 ,并把它们的解集在数轴上表示出来.
例2 解不等式 ,并把它们的解集在数轴上表示出来.
师生活动:教师板书例1,学生板书例2.(同桌交换练习,指出对方错误井纠正)
(1)解方程:
解:去括号,得
移项,得
合并同类项,得
化系数为1,得
方程的解在数轴上表示如下:
例1 解不等式:
解:去括号,得
移项,得
合并同类项,得
化系数为1,得
不等式的解在数轴上表示如下:
(2)解方程:
解:去分母,得
去括号,得
移项,得