圆心角、弧、弦、弦心距之间的关系
第一课时 圆心角、弧、弦、弦心距之间的关系(一)
教学目标:
(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;
(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;
(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.
教学重点、难点:
重点:圆心角、弧、弦、弦心距之间关系定理的推论.
难点:从感性到理性的认识,发现、归纳能力的培养.
教学活动设计
教学内容设计
(一)圆的对称性和旋转不变性
学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.
引出圆心角和弦心距的概念:
圆心角定义:顶点在圆心的角叫圆心角.
弦心距定义:从圆心到弦的距离叫做弦心距.
(二)圆心角、弧、弦、弦心距之间的关系
应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.
定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.
(三)剖析定理得出推论
问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)
举出反例:如图,∠AOB=∠COD,但AB CD, .(强化对定理的理解,培养学生的思维批判性.)
问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)
(四)应用、巩固和反思
例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.
解(略,教材87页)
例题拓展:当P点在圆上或圆内是否还有AB=CD呢?
(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)
练习:(教材88页练习)
1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空: .
(1)如果AB=CD,那么______,______,______;
(2)如果OE=OG,那么______,______,______;
(3)如果 = ,那么______,______,______;
(4)如果∠AOB=∠COD,那么______,______,______.
(目的:巩固基础知识)
2、(教材88页练习3题,略.定理的简单应用)
(五)小结:学生自己归纳,老师指导.
知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.
能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.
(六)作业:教材P99中1(1)、2、3.
第二课时 圆心角、弧、弦、弦心距之间的关系(二)
教学目标:
(1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;
(2)进一步培养学生自学能力,应用能力和计算能力;
(3)通过例题向学生渗透数形结合能力.
教学重点、难点: