上学期 2.2 函数
教学目标:
1.理解函数的概念,了解函数三要素.
2.通过对函数抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.
3.通过函数定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习.
教学重点难点:重点是在映射的基础上理解函数的概念;
难点是对函数抽象符号的认识与使用.
教学用具:投影仪
教学方法:自学研究与启发讨论式.
教学过程:
一、复习与引入
今天我们研究的内容是函数的概念.函数并不象前面学习的集合,映射一样我们一无所知,而是比较熟悉,所以我先找同学说说对函数的认识,如函数是什么?学过什么函数?
(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)
学生举出如 等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.
提问1. 是函数吗?
(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做 .)
教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.
二、新课
现在请同学们打开书翻到第50 页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)
提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.
学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.
(板书)2.2函数
一、函数的概念
1.定义:如果A,B都是非空的数集,那么A到B的映射 就叫做A到B的函数,记作 .其中原象集合A称为定义域,象集C 称为值域.
问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)
引导学生发现,函数是特殊的映射,特殊在集合A,B必是非空的数集.
2.本质:函数是非空数集到非空数集的映射.(板书)
然后让学生试回答刚才关于 是不是函数的问题,要求从映射的角度解释.
此时学生可以清楚的看到 满足映射观点下的函数定义,故是一个函数,这样解释就很自然.
教师继续把问题引向深入,提出在映射的观点下如何解释 是个函数?
从映射角度看可以是 其中定义域是 ,值域是 .
从刚才的分析可以看出,映射观点下的函数定义更具一般性,更能揭示函数的本质.这也是我们后面要对函数进行理论研究的一种需要.所以我们着重从映射角度再来认识函数.
3.函数的三要素及其作用(板书)
函数是映射,自然是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它.
例1 以下关系式表示函数吗?为什么?
(1) ; (2) .
解:(1)由 有意义得 ,解得 .由于定义域是空集,故它不能表示函数.
(2) 由 有意义得 ,解得 .定义域为 ,值域为 .
由以上两题可以看出三要素的作用
(1)判断一个函数关系是否存在.(板书)
例2 下列各函数中,哪一个函数与 是同一个函数.
(1) ; (2) (3) ; (4) .
解:先认清 ,它是 (定义域)到 (值域)的映射,其中
.
再看(1)定义域为 且