用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案高一数学教案对数函数» 正文

对数函数

[05-17 00:15:46]   来源:http://www.89xue.com  高一数学教案   阅读:90
摘要:提问:什么是指数函数?指数函数存在反函数吗?由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:由 得 .又 的值域为 , 所求反函数为 .那么我们今天就是研究指数函数的反函数-对数函数.2.8对数函数 (板书)一. 对数函数的概念1. 定义:函数 的反函数 叫做对数函数.由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .在此基础上,我们将一起来。
对数函数,标签:高一数学教案模板,http://www.89xue.com

  提问:什么是指数函数?指数函数存在反函数吗?

  由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

.又 的值域为

   所求反函数为

  那么我们今天就是研究指数函数的反函数-----对数函数.

2.8对数函数 (板书)

一. 对数函数的概念

  1. 定义:函数 的反函数 叫做对数函数.

  由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件

  在此基础上,我们将一起来研究对数函数的图像与性质.

二.对数函数的图像与性质 (板书)

  1. 作图方法

  提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

  由于指数函数的图像按 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 ,并分别以 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

 

2. 草图.

  教师画完图后再利用投影仪将 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3) 截距:令 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

                 当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书

上一页  [1] [2] [3]  下一页


Tag:高一数学教案高一数学教案模板教案大全 - 数学教案 - 高一数学教案
上一篇:函数的应用举例