用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案高二数学教案算术平均数与几何平均数(二)» 正文

算术平均数与几何平均数(二)

[05-17 00:40:41]   来源:http://www.89xue.com  高二数学教案   阅读:90
摘要:解: ,由 ,知 , ,且 .当且仅当 ,即 时, ( )有最小值,最小值是 。[点评] 要正确理解 的意义,即方程 要有解,且解在定义域内.[字幕] 例2 某工厂要建造一个长方体无盖贮水池,其容积为 4800 ,深为 3 m,如果池底每l 的造价为 150元,池壁每1 的造价为 120元,问怎样设计水池能使总造价最低,最低总造价是多少元?[分析] 设水池底面一边的长为 m,水池的总造价为y,建立y关干 的函数.然后用定理求函数y的最小值.解:设水池底面一边的长度为 m,则另一边的长度为 m,又设水池总造价为y元,根据题意,得 ( )所以 当 ,即 时,y。
算术平均数与几何平均数(二),标签:高二数学教案模板,http://www.89xue.com

  解: ,由 ,知 ,且 .当且仅当 ,即 时, )有最小值,最小值是

  [点评] 要正确理解 的意义,即方程 要有解,且解在定义域内.

  [字幕] 例2 某工厂要建造一个长方体无盖贮水池,其容积为 4800 ,深为 3 m,如果池底每l 的造价为 150元,池壁每1 的造价为 120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

  [分析] 设水池底面一边的长为 m,水池的总造价为y,建立y关干 的函数.然后用定理求函数y的最小值.

  解:设水池底面一边的长度为 m,则另一边的长度为 m,又设水池总造价为y元,根据题意,得

所以          

  当 ,即 时,y有最小值297600.因此,当水池的底面是边长为40 m的正方形时.水池的总造价最低,最低总造价是297600元.

  设计意图:加深理解应用平均值定理求最值的方法,学会应用平均值定理解决某些函数最值问题和实际问题,并掌握分析变量的构建思想.培养学生用数学知识解决实际问题的能力,化归的数学思想.

  【课堂练习】

  (教师活动)打出字幕(练习),要求学生独立思考,完成练习;请三位同学板演;巡视学生解题情况,对正确的给予肯定,对偏差进行纠正;讲评练习.

  (学生活动)在笔记本且完成练习、板演.

  [字幕〕练习

    A组

    1.求函数 )的最大值.

    2求函数 )的最值.

    3.求函数 )的最大值.

    B组

    1.设 ,且 ,求 的最大值.

    2.求函数 的最值,下面解法是否正确?为什么?

  解: ,因为 ,则 .所以

[讲评] A组 1. ; 2. ; 3.

B组 1. ; 2.不正确  ①当 时, ;②当 时, ,而函数在整个定义域内没有最值.

  设计意图;A组题训练学生掌握应用平均值定理求最值.B组题训练学生掌握平均值定理的综合应用,并对一些易出现错误的地方引起注意.同时反馈课堂教学效果,调节课堂教学.

  【分析归纳、小结解法】

  (教师活动)分析归纳例题和练习的解题过程,小结应用平均值定理解决有关函数最值问题和实际问题的解题方法.

  (学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.

  1.应用平均值定理可以解决积为定值或和为定值条件下,两个正变量的和或积的最值问题.

  2.应用定理时注意以下几个条件:(ⅰ)两个变量必须是正变量.(ⅱ)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值.(iii)当且仅当两个数相等时取最值,即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值.

  3.在求某些函数的最值时,会恰当的恒等变形——分析变量、配置系数.

  4.应用平均值定理解决实际问题时,应注意:(l)先理解题意,没变量,把要求最值的变量定为函数.(2)建立相应的函数关系式,把实际问题抽象为函数的最值问题,确定函数的定义域.(3)在定义域内,求出函数的最值,正确写出答案.

  设计意图:培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法.

上一页  [1] [2] [3] [4] [5]  下一页


Tag:高二数学教案高二数学教案模板教案大全 - 数学教案 - 高二数学教案