用户名: 密码: 企业 个人
当前位置:89学习网教育资料教学设计数学教学设计高三数学教学设计双曲线的几何性质2 人教选修1-1» 正文

双曲线的几何性质2 人教选修1-1

[07-12 17:18:19]   来源:http://www.89xue.com  高三数学教学设计   阅读:9652
摘要:由此可知,实半轴长a=4,虚半轴长b=3.焦点坐标是(0,-5),(0,5).本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:化简得:(c2-a2)x2-a2y2=a2(c2-a2).这就是双曲线的标准方程.由此例不难归纳出双曲线的第二定义.(六)双曲线的第二定义1.定义(由学生归纳给出)平面内点M与一定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率.2.说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结.五、布置作业1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)。
双曲线的几何性质2 人教选修1-1,标签:高三数学教学设计方案,http://www.89xue.com

由此可知,实半轴长a=4,虚半轴长b=3.

焦点坐标是(0,-5),(0,5).

本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.

解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:

化简得:(c2-a2)x2-a2y2=a2(c2-a2).

这就是双曲线的标准方程.

由此例不难归纳出双曲线的第二定义.

(六)双曲线的第二定义

1.定义(由学生归纳给出)

平面内点M与一定点的距离和它到一条直线的距离的比是常数e=

叫做双曲线的准线,常数e是双曲线的离心率.

2.说明

(七)小结(由学生课后完成)

将双曲线的几何性质按两种标准方程形式列表小结.

五、布置作业

1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.

(1)16x2-9y2=144;

(2)16x2-9y2=-144.

2.求双曲线的标准方程:

(1)实轴的长是10,虚轴长是8,焦点在x轴上;

(2)焦距是10,虚轴长是8,焦点在y轴上;

上一页  [1] [2] [3] [4]  下一页


Tag:高三数学教学设计高三数学教学设计方案教学设计 - 数学教学设计 - 高三数学教学设计