循环小数
(4)循环小数的简便写法:
练习:判断下面的数,哪些是循环小数,为什么?是循环小数的用循环点表示。
0.9375 1.5353…
5.1281414… 0.2142857142857…
5.314162… 8.4666…
3.1415926… 0.19292
5.用循环小数的近似值表示除法的商。
循环小数也可以根据需要取它的近似值。
(1)投影出示例9:一辆汽车的油箱里装130千克汽油,行驶一段路
学生试做后讲解:130÷6=21.666…≈21.67(千克。)
答:大约用去21.67kg。
强调:①保留两位小数,要在千分位上四舍五入;
②用四舍五入法得到的近似值要用“≈”表示。
(2)练习:P27“做一做”。
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值。
28÷18= 2.29÷11.1= 153÷7.2=
(三)巩固反馈
1.下面哪道题的商是有限小数?哪道题的商是无限小数?
10÷9 1.332÷4 23÷3.33
2.写出下面各循环小数的近似值(保留三位小数):
3.在○里填上“>”,“<”或“=”符号。
4.思考题:
用循环小数表示1÷7,2÷7,3÷7的商,比较小数部分有什么规律?并根据这一规律直接写出4÷7,5÷7,6÷7的商。
5.课后作业:P29:1,2,3。
课堂教学设计说明
因为循环小数属于无限小数,因此,先让学生通过计算认识有限小数与无限小数,然后在无限小数知识的范围内进一步学习循环小数,使学生明确知识的结构。
教学由计算比赛引入,使全体学生积极参与。既激发学生学习兴趣,又创设情境,吸引学生产生疑问,从而促进学生积极思维,去探究其中的原因。
在循环小数的意义的教学中,通过两个有思考性的问题:①二组两题中商的小数部分有什么特点?②小数部分数字重复出现的地方有什么区别?使学生抓住循环小数的本质特征。通过讨论,顺利概括出循环小数的意义,培养学生抽象概括能力。
板书设计(略
《循环小数》出自:www.89xue.com网