下学期 4.4 同角三角函数的基本关系式
,所以
又因为 ,所以
于是 ∴
由 为非零实数,可知角 的终边不在坐标轴上,考虑 的符号分第一、第四象限及第二、三象限,从而:
在三角求值过程中应尽量避免开方运算,在不可避免时,先计算与已知函数有平方关系的三角函数,这样可只进行一次开方运算,并可只进行一次符号说明.
同角三角函数关系式还经常用于化简三角函数式,请看例4
【例4】化简下列各式:
(1) ;(2) .
解:(1) (2)
3.演练反馈(投影)
(1)已知: ,求 的其他各三角函数值.
(2)已知 ,求 , .
(3)化简:
解答:(1)解:∵ ,所以 是第二、第三象限的角.
如果 是第二象限的角,则:
又
如果 是第三象限的角,那么
(2)解:∵ ∴ 是第二或第四象限的角
由【例3】的求法可知当 是第二象限时
当 是第四象限时
(3)解:原式
4.本课小结
(1)同角三角函数的三组关系式的前提是“同角”,因此 , …….
(2)诸如 , ,……它们都是条件等式,即它们成立的前提是表达式有意义.
(3)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.
课时作业:
1.已知 , ,则 等于( )
A. B. C. D.
2.若 ,则 的值是( )
A.-2 B.2 C.±2 D.
3.化简
4.化简 ,其中 为第二象限角.
5.已知 ,求 的值.
6.已知 是三角形的内角, ,求 值.
参考答案:1.D; 2.B; 3.1; 4. ; 5.3; 6.
注:4.略解:原式
∵