用户名: 密码: 企业 个人
当前位置:89学习网教育资料教学设计数学教学设计五年级数学教学设计稍复杂的方程 教案» 正文

稍复杂的方程 教案

[05-10 02:48:54]   来源:http://www.89xue.com  五年级数学教学设计   阅读:9702
摘要:个位上a+1=1,说明a=0。观察十位与千位,v+s=11,因此百位上v=1+1+1=3,代入v+s=11,得s=8。3.例2。编写意图例2创设了购买两种水果的现实问题情境。如果撇开各数量的具体内容,就它的数学意义来讲,可抽象为两积之和的数量关系。这种数量关系在生活中经常能遇到。而且,理解了两积之和的数量关系,也就容易理解两积之差、两商之差的数量关系。在例2中组成两积的四个因数,有两个是相同的,这就可以根据分配律,得到含小括号的方程。这些都使例2具有举一反三的典型意义。教材给出了两种方程,其一为两积之和等于已知的总数,让学生自己解答。其二为含小括号的方程,介绍了把小括号内的式子看作一个整体求解的思路和方法,并留有。
稍复杂的方程 教案,标签:五年级数学教学设计方案,http://www.89xue.com
  个位上a+1=1,说明a=0。观察十位与千位,v+s=11,因此百位上v=1+1+1=3,代入v+s=11,得s=8。   3.例2。   

编写意图

  例2创设了购买两种水果的现实问题情境。如果撇开各数量的具体内容,就它的数学意义来讲,可抽象为两积之和的数量关系。这种数量关系在生活中经常能遇到。而且,理解了两积之和的数量关系,也就容易理解两积之差、两商之差的数量关系。在例2中组成两积的四个因数,有两个是相同的,这就可以根据分配律,得到含小括号的方程。这些都使例2具有举一反三的典型意义。   教材给出了两种方程,其一为两积之和等于已知的总数,让学生自己解答。其二为含小括号的方程,介绍了把小括号内的式子看作一个整体求解的思路和方法,并留有空白让学生自己解完。   教学建议   (1)教学例题前,可以先复习两积之和的实际问题,如:   妈妈买了2 kg苹果和3 kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?让学生独立列式计算,并说出数量关系:   苹果的总价+梨的总价=总钱数   2.4×2+2.8×3=13.2(元)   (2)教学例题时,可以先把复习题改为:妈妈买了2 kg苹果和3 kg梨,共付13.2元钱,已知梨每千克2.8元,苹果每千克多少钱?   学生容易看出前后两题的数量关系没变,只是已知数和未知数交换了位置。因此,完全可以让学生自己列出方程并解答。   解:设苹果每千克x元。   2x+2.8×3=13.2   然后,出示例2,即把梨的数量由3 kg改为2 kg,让学生审题后,教师可提出问题:除了像上题那样列方程之外,还可以怎样列方程?有了上面的铺垫,学生不难想到:   (苹果的单价+梨的单价)×2=总钱数   并根据这个等量关系列出方程。   接下去就可以引导学生把小括号内的2.8+x看作一个整体,先求出2.8+x=?,剩下的解题过程可以让学生在课本上完成。   (3)作为补充练习可以给出一个方程,如:(26+x)×3=150让学生口头编出具有现实意义的问题,在小组内交流。这样的练习既有助于学生掌握数量关系,又能使学生初步体会这一数量关系广泛的现实意义。   4.例3。      编写意图   例3的内容是关于地球表面海洋面积和陆地面积的计算。它的特点是问题含有两个未知数,一般通常用两个已知条件说明两个未知数的关系。如给出两个未知数的和与差,或给出两个未知数的倍数关系与两个未知数的和(或差)。   具有这种数量关系的问题,在算术中称为“和差”、“和倍”、“差倍”问题。若用算术方法解,思路特殊,需要分别教学。改用方程解,都可归结为解形如ax±bx=c的方程,思路统一,解法一致,学会其中之一的解法,其他几种就很容易类推解决。 在实际生活中,也常常会遇到一些具有这种数量关系的问题。特别是当两个数的倍数关系用分数、百分数表示时,这样的问题就更常见了。   像这样含有两个未知数的问题,在本单元之前,学生还没接触过。但它与学生以前学过的不少内容有关。比如,已知两数,可以求出它们的和、差及倍数关系,这是小学低年级的小学内容。现在,从两数的和、差及倍数关系中选取两项作已知条件,反过来求两数各是多少,这就是我们在这里讨论的问题。可见,所谓的“和差”、“和倍”、“差倍”问题,实际上是已知两数,求它们的逆思考问题。   在小学中年级,曾出现过只有两个已知条件,却要两步计算解决的实际问题。如,舞蹈队有男生20人,女生人数是男生的2倍,舞蹈队共有学生多少人?女生比男生多多少人?这类问题的特点是选取两数之一作一个条件,再从两数的和、差及倍数关系这三个量中选取一个为另一个条件,然后求三个量中的其他两个量。不难看出,例3也是这类两步计算问题的逆思考问题。   解答例3,首先碰到的第一个问题是设未知数。学生已有的经验是“求什么设什么”。现在面临一道题中要求两个未知数各是多少,究竟设哪个为x,另一个又怎样表示?这是必须突破的一个难点。就数学本身来说,和差倍关系的两个未知数,任选一个设为x都是可行的。同样,另一个未知数的表示方法也有两种,即选用两个已知条件中的任何一个都能表示。比较而言,在各种解法中,把作为比较标准的未知数设为x,则用含x的式子表示另一个未知数就比较容易。   教材采用的就是这种方法。设陆地面积为x亿平方千米,根据两个量的倍数关系这个条件表示海洋面积,再根据另一个已知条件(两部分面积的和即地球表面积),列出方程。   这里第一次出现了形如ax±bx=c的方程。考虑到学生的知识水平和接受能力,教材没有出现合并同类项等术语,而是启发学生运用乘法分配律,将原方程转化为学生已会解的形式(a±b)x=c。这与合并同类项的方法实质上是一致的。   求出陆地面积后,接下去怎样求海洋面积?有两种选择。即任选两个已知条件中的任何一个都可以。教材以两个同学互相交流的形式,对两种算法都作了介绍。   教学建议   (1)教学例3前,可以采用口答形式进行一些写出含有字母式子的填空练习。如:学校科技组有女同学x人,男同学是女同学的3倍,男同学有( )人,男女同学一共有( )人,男同学比女同学多( )人。还可以给出复习题:   地球上的陆地面积为1.5亿平方千米,海洋面积约为陆地面积的2.4倍。地球的表面积是多少亿平方千米?让学生列式计算出地球表面积是5.1亿平方千米,作为新授的铺垫和过渡。 (2)教学例3时,可以先让学生说出已知条件,并根据已知条件画出线段图(暂不标出“x” )。再让学生说出所求问题,明确要求的未知数有两个。然后利用线段图启发学生思考,先设哪一个未知数为x,根据已知条件,另一个未知数该怎样用含有字母的式子来表示。根据学生的回答在线段图上标注x和2.4x。然后引导学生想:一个条件已经用来表示第二个未知数了,还可以根据哪个条件找出等量关系列方程?由此列出课本介绍的方程。然后将方程和复习题的算式进行对比:   1.5+1.5×2.4=5.1   x+2.4x=5.1   帮助学生沟通新旧知识的联系,进一步理解数量关系。   如果学生提出不同的方法,可酌情加以比较,如:   

上一页  [1] [2] [3]  下一页


Tag:五年级数学教学设计五年级数学教学设计方案教学设计 - 数学教学设计 - 五年级数学教学设计