相交线与平行线复习教案1
[04-17 04:38:57] 来源:http://www.89xue.com 七年级数学教学设计 阅读:9112次
摘要:www.89xue.com 二、 1. 互相垂直 2.点M,直线CD 点M,直线EF 平行线AB、EF间 线段GN的长度 3.4个 ∠EOB、 ∠DOF、∠ABD、∠CBD 4.两条直线都与第三条直线平行,这两条直线也互相平行 CD∥EF 5.两个角是相等两角的补角 这两个角相等 6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等,那么它的另一组对边也互相平行 7.156 8.114° 三、1.C 2.D 3.A 4.D 。
相交线与平行线复习教案1,标签:七年级数学教学设计方案,http://www.89xue.com
www.89xue.com 二、
1. 互相垂直
2.点M,直线CD 点M,直线EF 平行线AB、EF间 线段GN的长度
3.4个 ∠EOB、 ∠DOF、∠ABD、∠CBD
4.两条直线都与第三条直线平行,这两条直线也互相平行 CD∥EF
5.两个角是相等两角的补角 这两个角相等
6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等,那么它的另一组对边也互相平行
7.156 8.114°
三、1.C 2.D 3.A 4.D
四、1. 略
2.(1)CD∥AB
因为CD⊥MN,AB⊥MN,
所以CDN=∠ABM=90°
所以CD∥AB
(2)平行
因为∠CDN=∠ABN=90°,∠FDC=EBA
所以∠FDN=∠EBN
所以FD∥EB
3.(1)平行
因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义)
所以∠1=∠CDB
所以AE∥FC( 同位角相等两直线平行)
(2)平行,
因为AE∥CF,
所以∠C=∠CBE(两直线平行, 内错角相等)
又∠A=∠C 所以∠A=∠CBE
所以AF∥BC(两直线平行,内错角相等)
(3) 平分
因为DA平分∠BDF,
所以∠FDA=∠ADB
因为AE∥CF,AD∥BC
所以∠FDA=∠A=∠CBE,∠ADB=∠CBD
所以∠EBC=∠CBD
www.89xue.com 二、
1. 互相垂直
2.点M,直线CD 点M,直线EF 平行线AB、EF间 线段GN的长度
3.4个 ∠EOB、 ∠DOF、∠ABD、∠CBD
4.两条直线都与第三条直线平行,这两条直线也互相平行 CD∥EF
5.两个角是相等两角的补角 这两个角相等
6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等,那么它的另一组对边也互相平行
7.156 8.114°
三、1.C 2.D 3.A 4.D
四、1. 略
2.(1)CD∥AB
因为CD⊥MN,AB⊥MN,
所以CDN=∠ABM=90°
所以CD∥AB
(2)平行
因为∠CDN=∠ABN=90°,∠FDC=EBA
所以∠FDN=∠EBN
所以FD∥EB
3.(1)平行
因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义)
所以∠1=∠CDB
所以AE∥FC( 同位角相等两直线平行)
(2)平行,
因为AE∥CF,
所以∠C=∠CBE(两直线平行, 内错角相等)
又∠A=∠C 所以∠A=∠CBE
所以AF∥BC(两直线平行,内错角相等)
(3) 平分
因为DA平分∠BDF,
所以∠FDA=∠ADB
因为AE∥CF,AD∥BC
所以∠FDA=∠A=∠CBE,∠ADB=∠CBD
所以∠EBC=∠CBD
Tag:七年级数学教学设计,七年级数学教学设计方案,教学设计 - 数学教学设计 - 七年级数学教学设计