应用题(一)
教学目标
(一)使学生掌握连乘应用题的数量关系,学会能用两种方法正确地解答.
(二)通过分析解答应用题,培养学生分析推理的能力和灵活解答应用题的能力.
(三)培养学生认真审题,初步渗透不变中有变的辩证唯物主义思想.
教学重点和难点
重点:分析数量关系,用两种方法解答.
难点:第二种解法.
教学过程设计
(一)复习准备
选择合适的条件和问题,再算出来.
(1)每层有4个教室.
(2)每个教室有6盏灯.
(3)每箱“可乐”有12瓶.
A.12个教室装几盏灯?
B.4箱“可乐”共多少瓶?
C.3层有多少个教室?
学生回答后,老师提问.
这三道题为什么都用乘法计算.
(因为都是求几个几是多少)
(二)学习新课
出示例1:
一个商店运进5箱热水瓶,每箱12个.每个热水瓶卖11元,一共可以卖多少元?
分析已知条件和问题.
师:说出已知条件是什么?求的是什么?
条件:(1)有5箱热水瓶,(2)每箱12个,(3)每个11元.
问题:求一共可以卖多少元?
在学生审清题意的基础上,由条件入手,引导学生整体把握两种解法的两种思路:
师:要求一共可以卖多少元,这里有三个条件,根据哪两个条件可以直接求一个问题?
生:根据每箱12个和5箱热水瓶,可以求出一共有多少个.(板书:5箱有多少个)
师:知道了一共有多少个,再根据每个11元,可以进一步求什么?(板书:一共卖多少元)
这是一种思路,再想一想,要求这个问题根据这三个条件,还可以先求什么?
(学生们讨论一下)
生:根据每个11元和每箱12个,还可以先求出每箱卖多少元.(板书:每箱卖多少元)
师:求出了每箱卖多少元,与5箱结合,又可以求出什么呢?
(板书:一共可以卖多少元)
请同学们用两种方法,分步列式解答.
订正时,老师板书补充完整.
(1)每箱卖多少元? (1)5箱有多少个?
11×12=132(元) 12×5=60(个)
(2)一共可以卖多少元? (2)一共可以卖多少元?
132×5=660(元) 11×60=660(元)
答:一共可以卖660元.
师:我们把这两种解法,列成综合算式可以吗?请同学讨论一下.
讨论后请同学回答.(板书)
11×12×5 11×(12×5)
=132×5 =11×60