用户名: 密码: 企业 个人
当前位置:89学习网范文文章教案大全数学教案高二数学教案让教学设计更符合学生的认知» 正文

让教学设计更符合学生的认知

[05-17 00:39:06]   来源:http://www.89xue.com  高二数学教案   阅读:90
摘要: 作AH⊥BC于H,∠BAH=90º-B,∠CAH=90º-C,=||•||cos(90º-B), =||•||cos(90º-C),∴||•||cos(90º-B)=||•||cos(90º-C),∴||sinB=||sinC,∴csinB= bsinC,∴=这样,帮助学生“自我调节”,把平面几何知识与平面向量知识整合在一起,内化为个体自身的思维模式。2、前后呼应流畅化在引入新对象前刚学的知识和经验,对下续新对象的学习起着非常强的“暗示”作用,如果突然中断,而转入另一知识,学生会显得不知所措。教学。
让教学设计更符合学生的认知,标签:高二数学教案模板,http://www.89xue.com
          作AH⊥BC于H,∠BAH=90º-B,∠CAH=90º-C,=||•||cos(90º-B), =||•||cos(90º-C),∴||•||cos(90º-B)=||•||cos(90º-C), ∴||sinB=||sinC,∴csinB= bsinC,∴= 这样,帮助学生“自我调节”,把平面几何知识与平面向量知识整合在一起,内化为个体自身的思维模式。 2、前后呼应流畅化 在引入新对象前刚学的知识和经验,对下续新对象的学习起着非常强的“暗示”作用,如果突然中断,而转入另一知识,学生会显得不知所措。教学设计应顺势利导,产生共鸣。 案例2、等比数列前n项和公式的推导。 在等比数列前n项和公式的推导的教学中,大家除了介绍教材上的方法外,还介绍其他一些方法,但总觉得引入不自然。因为在学习了等比数列的定义后,推导等比数列前n项和公式,在方法上与以往的经验不一样,学生感到很突然。如果启发学生联系等比数列的定义,就容易得到: =q , =q , =q ,…,=q…… ⑴。转化为  a2=a1q,a3=a2q,a4=a3q,…,an=an-1q。各式左右分别相加,得 a2 + a3+ a4+…+ an =a1q+ a2q + a3q +…+ an-1q,即 a2 + a3+ a4+…+ an =(a1+ a2 + a3 +…+ an-1 )q……⑵,往下容易得出:Sn-a1 =(Sn-an)q , ∴(1-q)Sn=a1-an q,即(1-q)Sn=a1(1- qn),∴当q≠1时,Sn=。 当然,也可以引导学生对⑴式结合等比性质或对⑵式结合Sn= a1+ a2 + a3+ a4+…+ an的特征等方法,让学生在“不知不觉”中发现和“创造”出各种方法。创设情境,营造交流的氛围,帮助学生把新的问题“同化”到已有的认识框架(认知结构)之中,充分发挥教师的主导作用和学生的主体作用,这是优化教学设计的目标。 3、实际问题逐步数学化

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:高二数学教案高二数学教案模板教案大全 - 数学教案 - 高二数学教案
上一篇:“孙悟空请客”