小学四年级奥数专题讲座06:数的整除性(二)
[06-11 04:13:20] 来源:http://www.89xue.com 四年级数学教学设计 阅读:9635次
摘要: 第6讲 数的整除性(二)这一讲主要讲能被11整除的数的特征。一个数从右边数起,第1,3,5,…位称为奇数位,第2,4,6,…位称为偶数位。也就是说,个位、百位、万位……是奇数位,十位、千位、十万位……是偶数位。例如9位数768325419中,奇数位与偶数位如下图所示:能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。例1 判断七位数1839673能否被11整除。分析与解:奇数位上的数字之和为1+3+6+3=13,偶数位上的数字之和为8+9+7=24。
小学四年级奥数专题讲座06:数的整除性(二),标签:四年级数学教学设计方案,http://www.89xue.com
第6讲 数的整除性(二)
这一讲主要讲能被11整除的数的特征。
一个数从右边数起,第1,3,5,…位称为奇数位,第2,4,6,…位称为偶数位。也就是说,个位、百位、万位……是奇数位,十位、千位、十万位……是偶数位。例如9位数768325419中,奇数位与偶数位如下图所示:
能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。
例1 判断七位数1839673能否被11整除。
分析与解:奇数位上的数字之和为1+3+6+3=13,偶数位上的数字之和为8+9+7=24,因为24-13=11能被11整除,所以1839673能被11整除。
根据能被11整除的数的特征,也能求出一个数除以11的余数。
一个数除以11的余数,与它的奇数位上的数字之和减去偶数位上的数字之和所得的差除以11的余数相同。如果奇数位上的数字之和小于偶数位上的数字之和,那么应在奇数位上的数字之和上再增加11的整数倍,使其大于偶数位上的数字之和。
例2 求下列各数除以11的余数:
(1)41873; (2)296738185。
分析与解:(1)[(4+8+3)-(1+7)]÷11
=7÷11=0……7,
所以41873除以11的余数是7。
(2)奇数位之和为2+6+3+1+5=17,偶数位之和为9+7+8+8=32。因为17<32,所以应给17增加11的整数倍,使其大于32。
(17+11×2)-32=7,
所以296738185除以11的余数是7。
需要说明的是,当奇数位数字之和远远小于偶数位数字之和时,为了计算方便,也可以用偶数位数字之和减去奇数位数字之和,再除以11,所得余数与11的差即为所求。如上题(2)中,(32-17)÷11=1……4,所求余数是11-4=7。
例3 求
除以11的余数。
分析与解:奇数位是101个1,偶数位是100个9。
(9×100-1×101)÷11
=799÷11=72……7,
11-7=4,所求余数是4。
例3还有其它简捷解法,例如每个“19”奇偶数位上的数字相差9-1=8,
奇数位上的数字和与偶数位上的数字和相差8×99=8×9×11,能被11整除。所以例3相当于求最后三位数191除以11的余数。
例4 用3,3,7,7四个数码能排出哪些能被11整除的四位数?
解:只要奇数位和偶数位上各有一个3和一个7即可。有3377,3773,7337,7733。
例5 用1~9九个数码组成能被11整除的没有重复数字的最大九位数。
分析与解:最大的没有重复数字的九位数是987654321,由
(9+7+5+3+1)-(8+6+4+2)=5
知,987654321不能被11整除。为了保证这个数尽可能大,我们尽量调整低位数字,只要使奇数位的数字和增加3(偶数位的数字和自然就减少3),奇数位的数字之和与偶数位的数字之和的差就变为5+3×2=11,这个数就能被11整除。调整“4321”,只要4调到奇数位,1调到偶数位,奇数位就比原来增大3,就可达到目的。此时,4,3在奇数位,2,1在偶数位,后四位最大是2413。所求数为987652413。
例6 六位数
Tag:四年级数学教学设计,四年级数学教学设计方案,教学设计 - 数学教学设计 - 四年级数学教学设计