小学四年级奥数专题讲座04:数的整除性(一)
[06-11 04:13:20] 来源:http://www.89xue.com 四年级数学教学设计 阅读:9923次
摘要::因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。例4 五位数能被72整除,问:A与B各代表什么数字?分析与解:已知能被72整除。因为72=8×9,8和9是互质数,所以既能被8整除,又能被9整除。根据能被8整除的数的特征,要求能被8整除,由此可确定B=6。再根据能被9整除的数的特征,的各位数字之和为www.89xue.comA+3+2+9+B=A+3-f-2+9+6=A+20,因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27能被9整除,所以。
小学四年级奥数专题讲座04:数的整除性(一),标签:四年级数学教学设计方案,http://www.89xue.com
:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。 例4 五位数
能被72整除,问:A与B各代表什么数字?
分析与解:已知
能被72整除。因为72=8×9,8和9是互质数,所以
既能被8整除,又能被9整除。根据能被8整除的数的特征,要求
能被8整除,由此可确定B=6。再根据能被9整除的数的特征,
的各位数字之和为
www.89xue.com A+3+2+9+B=A+3-f-2+9+6=A+20, 因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27能被9整除,所以A=7。 解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。 例5 六位数
是6的倍数,这样的六位数有多少个?
分析与解:因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除。由六位数能被2整除,推知A可取0,2,4,6,8这五个值。再由六位数能被3整除,推知
3+A+B+A+B+A=3+3A+2B
能被3整除,故2B能被3整除。B可取0,3,6,9这4个值。由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个)。
例6 要使六位数
能被36整除,而且所得的商最小,问A,B,C各代表什么数字?
分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。六位数
能被4整除,就要
能被4整除,因此C可取1,3,5,7,9。
要使所得的商最小,就要使
:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。 例4 五位数
www.89xue.com A+3+2+9+B=A+3-f-2+9+6=A+20, 因为l≤A≤9,所以21≤A+20≤29。在这个范围内只有27能被9整除,所以A=7。 解答例4的关键是把72分解成8×9,再分别根据能被8和9整除的数的特征去讨论B和A所代表的数字。在解题顺序上,应先确定B所代表的数字,因为B代表的数字不受A的取值大小的影响,一旦B代表的数字确定下来,A所代表的数字就容易确定了。 例5 六位数
Tag:四年级数学教学设计,四年级数学教学设计方案,教学设计 - 数学教学设计 - 四年级数学教学设计