平行线的性质教案2
[04-22 03:33:12] 来源:http://www.89xue.com 七年级数学教学设计 阅读:9338次
摘要: 在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系. ②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗? 以上分析后,学生先推理说明, 师生交流,教师给出说理过程. 作CD∥AB。
平行线的性质教案2,标签:七年级数学教学设计方案,http://www.89xue.com
在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:
①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.
②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.
③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗?
以上分析后,学生先推理说明, 师生交流,教师给出说理过程.
作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).
所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB.
所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.
(2)教师投影课本P23探究的图(图5.3-4)及文字.
①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?它们的长度相等吗?
②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.
③师生给两条平行线的距离下定义.
学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.
教师板书定义:
(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.
④利用点到直线的距离来定义两条平行线的距离.
教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.
学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗?
这两个问题学生不难回答,教师归纳:
两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.
教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.
3.了解命题和它的构成.
(1)教师给出下列语句,学生分析语句的特点.
①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.
这些语句都是对某一件事情作出"是"或"不是"的判断.
(2)给出命题的定义.
判断一件事情的语句,叫做命题.
教师指出上述四个语句都是命题,而语句"画AB∥CD"没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.
(3)命题的组成.
①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
②命题的形成.
命题通常写成"如果……,那么……"的形式,"如果"后接的部分是题设,"那么"后接的部分是结论.
有的命题没有写成"如果……,那么……"的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成"如果……,那么……"形式.
师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.
在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:
①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.
②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.
③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗?
以上分析后,学生先推理说明, 师生交流,教师给出说理过程.
作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).
所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB.
所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.
(2)教师投影课本P23探究的图(图5.3-4)及文字.
①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?它们的长度相等吗?
②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.
③师生给两条平行线的距离下定义.
学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.
教师板书定义:
(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.
④利用点到直线的距离来定义两条平行线的距离.
教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.
学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗?
这两个问题学生不难回答,教师归纳:
两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.
教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.
3.了解命题和它的构成.
(1)教师给出下列语句,学生分析语句的特点.
①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.
这些语句都是对某一件事情作出"是"或"不是"的判断.
(2)给出命题的定义.
判断一件事情的语句,叫做命题.
教师指出上述四个语句都是命题,而语句"画AB∥CD"没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.
(3)命题的组成.
①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
②命题的形成.
命题通常写成"如果……,那么……"的形式,"如果"后接的部分是题设,"那么"后接的部分是结论.
有的命题没有写成"如果……,那么……"的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成"如果……,那么……"形式.
师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.
上一页 [1] [2] [3] [4] [5] [6] 下一页
Tag:七年级数学教学设计,七年级数学教学设计方案,教学设计 - 数学教学设计 - 七年级数学教学设计
上一篇:平移教案3