概率统计的解题技巧
[07-12 17:26:46] 来源:http://www.89xue.com 高三数学教学设计 阅读:9832次
摘要:[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力. [解答过程](Ⅰ)记"厂家任取4件产品检验,其中至少有1件是合格品"为事件A 用对立事件A来算,有 (Ⅱ) 可能的取值为 . , , . 记"商家任取2件产品检验,都合格"为事件B,则商家拒收这批产品的概率 . 所以商家拒收这批产品的概率为 . 例13.(2007年陕西卷理) 某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能。
概率统计的解题技巧,标签:高三数学教学设计方案,http://www.89xue.com
[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.
[解答过程](Ⅰ)记"厂家任取4件产品检验,其中至少有1件是合格品"为事件A
用对立事件A来算,有
(Ⅱ) 可能的取值为 .
,
,
.
记"商家任取2件产品检验,都合格"为事件B,则商家拒收这批产品的概率
.
所以商家拒收这批产品的概率为 .
例13.(2007年陕西卷理)
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为 、 、 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为 ,求随机变量 的分布列与数学期望.
(注:本小题结果可用分数表示)
[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.
[解答过程]解法一:(Ⅰ)记"该选手能正确回答第 轮的问题"的事件为 ,则 , , ,
该选手被淘汰的概率
.
(Ⅱ) 的可能值为 , ,
,
.
的分布列为
1 2 3
不错哦 .
解法二:(Ⅰ)记"该选手能正确回答第 轮的问题"的事件为 ,则 , , .
该选手被淘汰的概率 .
(Ⅱ)同解法一.
考点3 离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望: …;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差: … …;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质: ; .
(4)若 ~B(n,p),则 ; D =npq(这里q=1-p) ;
如果随机变量 服从几何分布, ,则 ,D = 其中q=1-p.
例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:
ε 0 1 2 η 0 1 2
P
P
则比较两名工人的技术水平的高低为 .
思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.
解答过程:工人甲生产出次品数ε的期望和方差分别为:
,
;
工人乙生产出次品数η的期望和方差分别为:
,
由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但Dε>Dη,可见乙的技术比较稳定.
小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.
例15.(2007年全国I理)
某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为
[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.
[解答过程](Ⅰ)记"厂家任取4件产品检验,其中至少有1件是合格品"为事件A
用对立事件A来算,有
(Ⅱ) 可能的取值为 .
,
,
.
记"商家任取2件产品检验,都合格"为事件B,则商家拒收这批产品的概率
.
所以商家拒收这批产品的概率为 .
例13.(2007年陕西卷理)
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为 、 、 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为 ,求随机变量 的分布列与数学期望.
(注:本小题结果可用分数表示)
[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.
[解答过程]解法一:(Ⅰ)记"该选手能正确回答第 轮的问题"的事件为 ,则 , , ,
该选手被淘汰的概率
.
(Ⅱ) 的可能值为 , ,
,
.
的分布列为
1 2 3
不错哦 .
解法二:(Ⅰ)记"该选手能正确回答第 轮的问题"的事件为 ,则 , , .
该选手被淘汰的概率 .
(Ⅱ)同解法一.
考点3 离散型随机变量的期望与方差
随机变量的数学期望和方差
(1)离散型随机变量的数学期望: …;期望反映随机变量取值的平均水平.
⑵离散型随机变量的方差: … …;
方差反映随机变量取值的稳定与波动,集中与离散的程度.
⑶基本性质: ; .
(4)若 ~B(n,p),则 ; D =npq(这里q=1-p) ;
如果随机变量 服从几何分布, ,则 ,D = 其中q=1-p.
例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:
ε 0 1 2 η 0 1 2
P
P
则比较两名工人的技术水平的高低为 .
思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.
解答过程:工人甲生产出次品数ε的期望和方差分别为:
,
;
工人乙生产出次品数η的期望和方差分别为:
,
由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但Dε>Dη,可见乙的技术比较稳定.
小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.
例15.(2007年全国I理)
某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页
Tag:高三数学教学设计,高三数学教学设计方案,教学设计 - 数学教学设计 - 高三数学教学设计
上一篇:导数题的解题技巧