三角形的内角和
课题 三角形的内角和 手 记 教学目标 1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。 2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。 3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。 重点难点 重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。 难点:探索、验证三角形内角和是180°的过程。 过程 资 源 体验目标 “学”与“教” 创设问题情境 课件出示:两个三角板 遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。 这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度? 生: 45°、90°、45°。 生: 30°、90°、60°。 师:仔细观察,算一算这两个三角形的内角和是多少度? 生:90°+45°+45°=180°。 生:90°+60°+30°=180°。 师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么? 生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。 师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。 构建 模型 每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个) 课件 学生自己剪的一个任意三角形 大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。 让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。 这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。 师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和? 学生动手操作验证