用户名: 密码: 企业 个人
当前位置:89学习网教育资料教学设计数学教学设计八年级数学教学设计提公因式法教案2» 正文

提公因式法教案2

[04-13 04:28:08]   来源:http://www.89xue.com  八年级数学教学设计   阅读:9790
摘要: 解:2a(b+c)-3(b+c)=(b+c)(2a-3). [例3]解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1). 注意:x(3x-6y+1)=3x2-6xy+x,而x(3x-6y)=3x2-6xy,所以原多项式因式分解为x(3x-6xy+1)而不是x(3x-6y).这就是说,1作为项的系数,通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,可以概括为:某项提出莫漏1. [例4]解:-4a3+16a2-18a =-(4a3-16a2+18a) =-2a(2a2-8a+9) 注意:如果多项式。
提公因式法教案2,标签:八年级数学教学设计方案,http://www.89xue.com
    解:2a(b+c)-3(b+c)=(b+c)(2a-3).
    [例3]解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1).
    注意:x(3x-6y+1)=3x2-6xy+x,而x(3x-6y)=3x2-6xy,所以原多项式因式分解为x(3x-6xy+1)而不是x(3x-6y).这就是说,1作为项的系数,通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,可以概括为:某项提出莫漏1.
    [例4]解:-4a3+16a2-18a
    =-(4a3-16a2+18a)
    =-2a(2a2-8a+9)
    注意:如果多项式的第一项的系数是负的,一般要提出"-"号,使括号内的第一项的系数是正的.在提出"-"号时,多项式的各项都要变号.可以用一句话概括:首项有负常提负.
    [例5]分析:先找6(x-2)与x(2-x)的公因式,再提取公因式.因为2-x=-(x-2),所以x-2即公因式.
    解:6(x-2)+x(2-x)
    =6(x-2)-x(x-2)
    =(x-2)(6-x).
    总结:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,但可以发现公因式,然后再提取公因式.
    Ⅲ.随堂练习
    1.课本P194练习1、2、3.
    Ⅳ.课时小结
    [师]今天我们学习了提公因式法分解因式.同学们在理解的基础上,可以用四句顺口溜来总结记忆用提公因式法分解因式的技巧.
    各项有"公"先提"公",
    首项有负常提负.
    某项提出莫漏1.
    括号里面分到"底".
    Ⅴ.课后作业
    课本P198~P199习题15.5─1、4.(1),6题.


上一页  [1] [2] 


Tag:八年级数学教学设计八年级数学教学设计方案教学设计 - 数学教学设计 - 八年级数学教学设计