用户名: 密码: 企业 个人
当前位置:89学习网教育资料学习方法高三学习方法高三数学学习方法高三数学集合与常用逻辑用语测试题» 正文

高三数学集合与常用逻辑用语测试题

[07-25 14:24:28]   来源:http://www.89xue.com  高三数学学习方法   阅读:9959
摘要:答案:D11.若命题“∀x,y∈(0,+∞),都有(x+y)1x+ay≥9”为真命题,则正实数a的最小值是()A.2 B.4 C.6 D.8解析:(x+y)1x+ay=1+a+axy+yx≥1+a+2a=(a+1)2≥9,所以a≥4,故a的最小值为4.答案:B12.设p:y=cx(c>0)是R上的单调递减函数;q:函数g(x)=lg(2cx2+2x+1)的值域为R.如果“p且q”为假命题,“p或q”为真命题,则c的取值范围是()A.12,1 B.12,+∞C.0。
高三数学集合与常用逻辑用语测试题,标签:高三数学,http://www.89xue.com
答案:D
11.若命题“∀x,y∈(0,+∞),都有(x+y)1x+ay≥9”为真命题,则正实数a的最小值是(  )
A.2   B.4 
C.6   D.8
解析:(x+y)1x+ay=1+a+axy+yx≥1+a+2a=(a+1)2≥9,所以a≥4,故a的最小值为4.
答案:B
12.设p:y=cx(c>0)是R上的单调递减函数;q:函数g(x)=lg(2cx2+2x+1)的值域为R.如果“p且q”为假命题,“p或q”为真命题,则c的取值范围是(  )
A.12,1  B.12,+∞
C.0,12∪[1,+∞)   D.0,12
解析:由y=cx(c>0) 是R上的单调递减函数,
得0<c<1,所以p:0<c<1,
由g(x)=lg(2cx2+2x+1)的值域为R,
得当c=0时,满足题意.
当c≠0时,由c>0,Δ=4-8c≥0,得0<c≤12.
所以q:0≤c≤12.
由p且q为假命题,p或q为真命题可 知p、q一假一真.
当p为真命题,q为假命题时,得12<c<1,
当p为假命题时,c≥1,q为真命题时,0≤c≤12.
故此时这样的c不存在.
综上,可知12<c<1.
答案:A
第Ⅱ卷 (非选择 共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
13.已知命题p:∃x∈R,x3-x2+1≤0,则命题p是____________________.
解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论.
答 案:∀x∈R,x3-x2+1>0
14.若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是__________.
解析:∵“∃x∈R,2x2-3ax+9<0”为假命题,
∴“∀x∈R,2x2-3ax+9≥0”为真命题.
∴Δ=9a2-4×2×9≤0,解得-22≤a≤22.
故实数a的取值范围是[-22,22].
答案:[-22,22]
15.已知命题p:“对∀x∈R,∃m∈R使4x-2x+1+m=0”,若命题p是假命题,则实数m的取值范围是__________.
解析:命题p是假命题,即命题p是真命题,也就是关于x的方程4x-2x+1+ m=0有实数解,即m=-(4x-2x+1).令f(x)=-(4x-2x+1),由于f(x)=-( 2x-1)2+1,所以当x∈R时f(x)≤1,因此实数m的取值范围是(-∞,1].
答案:(-∞,1]
16.已知集合A={x∈R|x2-x≤0},函数f(x)=2-x+a(x∈A)的值域为B.若B⊆A,则实数a的取值范围是__________.
解析:A={x∈R|x2-x≤0}=[0 ,1].
∵函数f(x)=2-x+a在[0,1]上为减函数,
∴函数f(x)=2-x+a(x∈A)的值域B=12+a,1+a.
∵B⊆A,
∴12+a≥0,1+a≤1.解得-12≤a≤0.
故实数a的取值范围是-12,0.
答案:-12,0
三、解答题:本大题共6小题,共70分.
17.(10分)记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=3-|x|的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.
解析:(1)依题意,得A={x|x2-x-2>0}={x|x<-1,或x>2},
B={x|3-|x|≥0}={x|-3≤x≤3},
∴A∩B={x|-3≤x<-1,或2<x≤3},
A∪B=R.
(2)由4x+p<0,得x<-p4,而C⊆A,
∴-p4≤-1.∴p≥4.
18.(12分)已知命题p:关于x的不等式x2-2ax+4>0对一切x∈R恒成立;命题q:函数y=log(4-2a)x在(0,+∞)上递减.若p∨q为真,p∧q为假,求实数a的取值范围.
解析:命题p为真,则有4a2-16<0,解得-2<a<2;
命题q为真,则有0<4-2a<1,解得32<a<2.
由“p∨q为真,p∧q为假”可知p和q满足:
p真q真、p假q真、p假q假.
而当p真q假时,应有-2<a<2,a≥2或,a≤32,即-2<a≤32,
取其补集得a≤-2,或a>32,
此即为当“p∨q为真,p∧q为假”时实数a的取值范围,故a∈(-∞,-2]∪32,+∞

上一页  [1] [2] [3]  下一页


Tag:高三数学学习方法高三数学学习方法 - 高三学习方法 - 高三数学学习方法