勾股定理教案
[07-12 16:07:10] 来源:http://www.89xue.com 八年级数学教学设计 阅读:9167次
摘要: 四.小结与反思 1. 这节课给我的收获是…… 2. 在探索问题过程中遇到挫折,你会怎么办? 3. .对于本节课你还有疑问的地方吗? A组(1) ΔABC中,∠C=90? ①若a=3cm,b=4cm,则C= cm ②若 a=12cm,c=13cm,则b= cm ③若 c=16cm,a=60cm,则b= cm ④若 a:b=3:4,c=15cm,则a= cm,b= cm (2)如图,如果树正方形A的面积是16,正方形B的面。
勾股定理教案,标签:八年级数学教学设计方案,http://www.89xue.com
四.小结与反思
1. 这节课给我的收获是……
2. 在探索问题过程中遇到挫折,你会怎么办?
3. .对于本节课你还有疑问的地方吗?
A组(1) ΔABC中,∠C=90?
①若a=3cm,b=4cm,则C= cm
②若 a=12cm,c=13cm,则b= cm
③若 c=16cm,a=60cm,则b= cm
④若 a:b=3:4,c=15cm,则a= cm,b= cm
(2)如图,如果树正方形A的面积是16,正方形B的面积是9,那么正方形C的面积是 ;如果正方形B的面积是36,正方形C的面积是100,那么正方形A的面积是 。
B组
如图,直角三角形ABC中,两条直角边AC、BC的长分别是12cm和16cm,CD是斜边AB上的高,请计算:
(1) 直角三形ABC的面积:
(2) 斜面边AB的长:
(3) 斜面边AB与AB上的高CD的积:
(4) 通过这个问题的求解,你发现直角三角形的两条边的乘积与斜边及其斜边上的高的乘积有什么关系?
C组(1)有一根70 cm的木棒,要放在长、宽、高分别是50 cm,40 cm ,30 cm的木箱中,能放进去吗?
(设计意图:在实际生活中,往往工程设计方案比较多,应用所学的勾股定理和丰富的空间想象力来解决,数学来源于生活)
(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,
其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和?
(设计意图:设计了A. B .C三类题意在是让不同层次的学生得到不同的发展,培养学生自我总结评价的能力,使课外成为课堂的有续延伸。
四.小结与反思
1. 这节课给我的收获是……
2. 在探索问题过程中遇到挫折,你会怎么办?
3. .对于本节课你还有疑问的地方吗?
A组(1) ΔABC中,∠C=90?
①若a=3cm,b=4cm,则C= cm
②若 a=12cm,c=13cm,则b= cm
③若 c=16cm,a=60cm,则b= cm
④若 a:b=3:4,c=15cm,则a= cm,b= cm
(2)如图,如果树正方形A的面积是16,正方形B的面积是9,那么正方形C的面积是 ;如果正方形B的面积是36,正方形C的面积是100,那么正方形A的面积是 。
B组
如图,直角三角形ABC中,两条直角边AC、BC的长分别是12cm和16cm,CD是斜边AB上的高,请计算:
(1) 直角三形ABC的面积:
(2) 斜面边AB的长:
(3) 斜面边AB与AB上的高CD的积:
(4) 通过这个问题的求解,你发现直角三角形的两条边的乘积与斜边及其斜边上的高的乘积有什么关系?
C组(1)有一根70 cm的木棒,要放在长、宽、高分别是50 cm,40 cm ,30 cm的木箱中,能放进去吗?
(设计意图:在实际生活中,往往工程设计方案比较多,应用所学的勾股定理和丰富的空间想象力来解决,数学来源于生活)
(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,
其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和?
(设计意图:设计了A. B .C三类题意在是让不同层次的学生得到不同的发展,培养学生自我总结评价的能力,使课外成为课堂的有续延伸。
Tag:八年级数学教学设计,八年级数学教学设计方案,教学设计 - 数学教学设计 - 八年级数学教学设计
上一篇:轴对称与轴对称图形教案