《圆周角的性质》教学案例
[04-02 04:19:18] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9651次
摘要: 七、 证明猜想,得出结论 引导学生证明猜想,逐步渗透由特殊到一般,分类讨论等数学思想,充分展示学生的证明过程。 [师板书]:性质2:圆周角等于它所对的弧所对的圆心角的一半。 八、进一步探索,完善结论 性质3:同弧或等弧所对的圆心角相等。 九、巩固定理,初步应用 [电脑展示]:例如:OA、OB、OC都是⊙O的半径,∠AOB=∠BOC,求证:∠ACB≌2∠BCA (图形略) 证明:∵∠ACB=1∕2∠AOB,∠BAC=1/2∠BOC ∠AOB=1/2∠BOC 。
《圆周角的性质》教学案例,标签:九年级数学教学设计方案,http://www.89xue.com
七、 证明猜想,得出结论
引导学生证明猜想,逐步渗透由特殊到一般,分类讨论等数学思想,充分展示学生的证明过程。
[师板书]:性质2:圆周角等于它所对的弧所对的圆心角的一半。
八、进一步探索,完善结论
性质3:同弧或等弧所对的圆心角相等。
九、巩固定理,初步应用
[电脑展示]:例如:OA、OB、OC都是⊙O的半径,∠AOB=∠BOC,求证:∠ACB≌2∠BCA (图形略)
证明:∵∠ACB=1∕2∠AOB,∠BAC=1/2∠BOC
∠AOB=1/2∠BOC ∴∠ACB=2∠BAC
(使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力。)
十、引导小结,进行反思
引导学生谈一谈本节课自己的学习体会。
十一、设计作业
1、书面作业:课本第165页练习第2题,第166页习题24.1复习巩固1、2、3、4题
2、探究作业:课后同学互助总结圆心角与圆周角的区别和联系(列表或语言叙述)。
七、 证明猜想,得出结论
引导学生证明猜想,逐步渗透由特殊到一般,分类讨论等数学思想,充分展示学生的证明过程。
[师板书]:性质2:圆周角等于它所对的弧所对的圆心角的一半。
八、进一步探索,完善结论
性质3:同弧或等弧所对的圆心角相等。
九、巩固定理,初步应用
[电脑展示]:例如:OA、OB、OC都是⊙O的半径,∠AOB=∠BOC,求证:∠ACB≌2∠BCA (图形略)
证明:∵∠ACB=1∕2∠AOB,∠BAC=1/2∠BOC
∠AOB=1/2∠BOC ∴∠ACB=2∠BAC
(使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力。)
十、引导小结,进行反思
引导学生谈一谈本节课自己的学习体会。
十一、设计作业
1、书面作业:课本第165页练习第2题,第166页习题24.1复习巩固1、2、3、4题
2、探究作业:课后同学互助总结圆心角与圆周角的区别和联系(列表或语言叙述)。
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:用公式法解一元二次方程教案