从梯子的倾斜程度谈起教案1
教学目标
(一)教学知识点
1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,并能够用正切进行简单的计算.
(二)能力训练要求
1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点.
2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力.
3.体会解决问题的策略的多样性,发展实践能力和创新精神.
(三)情感与价值观要求
1.积极参与数学活动,对数学产生好奇心和求知欲.
2.形成实事求是的态度以及独立思考的习惯.
教学重点
1.从现实情境中探索直角三角形的边角关系.
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.
教学难点
理解正切的意义,并用它来表示两边的比.
教学方法
引导-探索法.
教具准备
FLASH演示
教学过程
Ⅰ.创设问题情境,引入新课
用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:
[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?
[问题2]随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,"上海最高大厦"的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?
通过本章的学习,相信大家一定能够解决.
这节课,我们就先从梯子的倾斜程度谈起.(板书课题§1.1.1从梯子的倾斜程度谈起).
Ⅱ.讲授新课
用多媒体演示如下内容:
[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的"陡",那个梯子放的"平缓",人们是如何判断的?"陡"或"平缓"是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)
(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?
[生]梯子AB比梯子EF更陡.
[师]你是如何判断的?
[生]从图中很容易发现∠ABC>∠EFD,所以梯子AB比梯子EF陡.
[生]我觉得是因为AC=ED,所以只要比较BC、FD的长度即可知哪个梯子陡.BC<FD,所以梯子AB比梯子EF陡.
[师]我们再来看一个问题(用多媒体演示)
(2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的?
[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?
[生]在第(1)问的图形中梯子的垂直高度即AC和ED是相等的,而水平宽度BC和FD不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.
[师]这位同学的想法很好.的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子AB和EF的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB和EF哪一个更陡呢?
[生] ,
∵ < ,
∴梯子EF比梯子AB更陡.
多媒体演示: