从梯子的倾斜程度谈起教案1
[04-06 03:56:57] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9141次
摘要: 想一想 如图,小明想通过测量B1C1及AC1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗? (1)直角三角形AB1C1和直角三角形AB2C2有什么关系? (2) 和 有什么关系? (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论? [师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法. [生]在上图中,我们可以知道Rt△AB1C1和Rt△AB2C2是相。
从梯子的倾斜程度谈起教案1,标签:九年级数学教学设计方案,http://www.89xue.com
想一想
如图,小明想通过测量B1C1及AC1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?
(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?
(2) 和 有什么关系?
(3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?
[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.
[生]在上图中,我们可以知道Rt△AB1C1和Rt△AB2C2是相似的.因为∠B2C2A=∠B1C1A=90°,∠B2AC2=∠B1AC1,根据相似的条件,得Rt△AB1C1∽Rt△AB2C2.
[生]由图还可知:B2C2⊥AC2,B1C1⊥AC1,得B2C2∥B1C1,Rt△AB1C1∽Rt△AB2C2.
[生]相似三角形的对应边成比例,得
,即 .
如果改变B2在梯子上的位置,总可以得到Rt△B2C2A∽Rt△B1C1A,仍能得到 ;因此,无论B2在梯子的什么位置(除A外), 总成立.
[师]也就是说无论B2在梯子的什么位置(A除外),∠A的对边与邻边的比值是不会改变的.
现在如果改变∠A的大小,∠A的对边与邻边的比值会改变吗?
[生]∠A的大小改变,∠A的对边与邻边的比值会改变.
[师]你又能得出什么结论呢?
[生]∠A的对边与邻边的比只与∠A的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.
[师]这位同学回答得很棒.现在我们再返回去看一下小明和小亮的做法,你作何评价?
www.89xue.com [生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A是确定的,因此它的对边与邻边的比值也是唯一确定的,与B1、B2在梯子上的位置无关,即与直角三角形的大小无关.
[生]但我觉得小亮的做法更实际,因为要测量B1C1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.
[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.
由于直角三角形中的锐角A确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)
如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边之比便随之确定,这个比叫做∠A的正切(tangent),记作tanA,即
tanA= .
注意:
1.tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号"∠".
2.tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.
3.tanA不表示"tan"乘以"A".
4.初中阶段,我们只学习直角三角形中,∠A是锐角的正切.
思考:1.∠B的正切如何表示?它的数学意义是什么?
2.前面我们讨论了梯子的倾斜程度,课本图1-3,梯子的倾斜程度与tanA有关系吗?
[生]1.∠B的正切记作tanB,表示∠B的对边与邻边的比值,即
tanB= .
2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图1-3中,梯子越陡,tanA的值越大;反过来,tanA的值越大,梯子越陡.
[师]正切在日常生活中的应用很广泛.例如建筑、工程技术等,正切经常用来描述山坡的坡度、堤坝的坡度.
如图,有一山坡在水平方向上每前进100m,就升高60m,那么山坡的坡度(即坡角α的正切--tanα)就是
想一想
如图,小明想通过测量B1C1及AC1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?
(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?
(2) 和 有什么关系?
(3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?
[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.
[生]在上图中,我们可以知道Rt△AB1C1和Rt△AB2C2是相似的.因为∠B2C2A=∠B1C1A=90°,∠B2AC2=∠B1AC1,根据相似的条件,得Rt△AB1C1∽Rt△AB2C2.
[生]由图还可知:B2C2⊥AC2,B1C1⊥AC1,得B2C2∥B1C1,Rt△AB1C1∽Rt△AB2C2.
[生]相似三角形的对应边成比例,得
,即 .
如果改变B2在梯子上的位置,总可以得到Rt△B2C2A∽Rt△B1C1A,仍能得到 ;因此,无论B2在梯子的什么位置(除A外), 总成立.
[师]也就是说无论B2在梯子的什么位置(A除外),∠A的对边与邻边的比值是不会改变的.
现在如果改变∠A的大小,∠A的对边与邻边的比值会改变吗?
[生]∠A的大小改变,∠A的对边与邻边的比值会改变.
[师]你又能得出什么结论呢?
[生]∠A的对边与邻边的比只与∠A的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.
[师]这位同学回答得很棒.现在我们再返回去看一下小明和小亮的做法,你作何评价?
www.89xue.com [生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A是确定的,因此它的对边与邻边的比值也是唯一确定的,与B1、B2在梯子上的位置无关,即与直角三角形的大小无关.
[生]但我觉得小亮的做法更实际,因为要测量B1C1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.
[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.
由于直角三角形中的锐角A确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)
如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边之比便随之确定,这个比叫做∠A的正切(tangent),记作tanA,即
tanA= .
注意:
1.tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号"∠".
2.tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.
3.tanA不表示"tan"乘以"A".
4.初中阶段,我们只学习直角三角形中,∠A是锐角的正切.
思考:1.∠B的正切如何表示?它的数学意义是什么?
2.前面我们讨论了梯子的倾斜程度,课本图1-3,梯子的倾斜程度与tanA有关系吗?
[生]1.∠B的正切记作tanB,表示∠B的对边与邻边的比值,即
tanB= .
2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图1-3中,梯子越陡,tanA的值越大;反过来,tanA的值越大,梯子越陡.
[师]正切在日常生活中的应用很广泛.例如建筑、工程技术等,正切经常用来描述山坡的坡度、堤坝的坡度.
如图,有一山坡在水平方向上每前进100m,就升高60m,那么山坡的坡度(即坡角α的正切--tanα)就是
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:从梯子的倾斜程度谈起教案2