诱导公式教学设计
[07-12 16:26:06] 来源:http://www.89xue.com 高一数学教学设计 阅读:9444次
摘要: 由此可知,点P′的坐标是(-x,-y). 又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα= ,cos(180°+α)=-x,sin(180°+α)=-y,tan(180°+α)= . 从而得到: 5. 分析4 在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-&a。
诱导公式教学设计,标签:高一数学教学设计方案,http://www.89xue.com
由此可知,点P′的坐标是(-x,-y).
又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα= ,cos(180°+α)=-x,sin(180°+α)=-y,tan(180°+α)= .
从而得到:
5. 分析4
在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-α),即:先把180°-α的三角函数值转化为-α的三角函数值,然后通过寻找-α的三角函数值与α的三角函数值之间的关系,使原问题得到解决.
由学生独立完成如下推导:
如图,设任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点P′.∵这两个角的终边关于x轴对称,∴点P′的坐标是(x,-y).又∵r=1,∴cos(-α)=x,
sin(-α)=-y,tan(-α)=
从而得到:
进而推出:
注:在问题的解决过程中,教师要注意让学生充分体验成功的快乐.
6. 教师归纳
公式(一)、(二)、(三)、(四)、(五)都叫作诱导公式,利用它们可以把k·360°+α,180°±α,-α,360°-α的三角函数转化为α的三角函数.那么,在转化过程中,发生了哪些变化?这种变化是否存在着某种规律?
引导学生进行如下概括:α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,还可编成一句口诀"函数名不变,符号看象限".
三、解释应用
[例 题]
1. 求下列各三角函数值.
由此可知,点P′的坐标是(-x,-y).
又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα= ,cos(180°+α)=-x,sin(180°+α)=-y,tan(180°+α)= .
从而得到:
5. 分析4
在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-α),即:先把180°-α的三角函数值转化为-α的三角函数值,然后通过寻找-α的三角函数值与α的三角函数值之间的关系,使原问题得到解决.
由学生独立完成如下推导:
如图,设任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点P′.∵这两个角的终边关于x轴对称,∴点P′的坐标是(x,-y).又∵r=1,∴cos(-α)=x,
sin(-α)=-y,tan(-α)=
从而得到:
进而推出:
注:在问题的解决过程中,教师要注意让学生充分体验成功的快乐.
6. 教师归纳
公式(一)、(二)、(三)、(四)、(五)都叫作诱导公式,利用它们可以把k·360°+α,180°±α,-α,360°-α的三角函数转化为α的三角函数.那么,在转化过程中,发生了哪些变化?这种变化是否存在着某种规律?
引导学生进行如下概括:α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,还可编成一句口诀"函数名不变,符号看象限".
三、解释应用
[例 题]
1. 求下列各三角函数值.
Tag:高一数学教学设计,高一数学教学设计方案,教学设计 - 数学教学设计 - 高一数学教学设计
上一篇:向量的概念教学设计