教案一:第三课时(椭圆)人教选修1-1
[07-12 17:15:55] 来源:http://www.89xue.com 高三数学教学设计 阅读:9782次
摘要: 椭圆的定义不仅是推导方程的基础,而且是证题的一把金钥匙.待证题目中有焦点的条件,常从定义出发,寻求证题方法,为证题创造条件,兹举例如下:例1 已知P(x0,y0)是椭圆 (a>b>0)上的任意一点,F1、F2是焦点,求证:以PF2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF2为直径的圆心为A,半径为r.∵F1、F2为焦点,所以由椭圆定义知|PF1|+|PF2|=2a,|PF2|=2r∴|PF1|+2r=2a,即|PF1|=2(a-r)连结OA,由三角形中位线定理,知|OA|=故以PF2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证.例。
教案一:第三课时(椭圆)人教选修1-1,标签:高三数学教学设计方案,http://www.89xue.com
椭圆的定义不仅是推导方程的基础,而且是证题的一把金钥匙.待证题目中有焦点的条件,常从定义出发,寻求证题方法,为证题创造条件,兹举例如下:
例1 已知P(x0,y0)是椭圆
(a>b>0)上的任意一点,F1、F2是焦点,求证:以PF2为直径的圆必和以椭圆长轴为直径的圆相内切.
证明 设以PF2为直径的圆心为A,半径为r.
∵F1、F2为焦点,所以由椭圆定义知
|PF1|+|PF2|=2a,|PF2|=2r
∴|PF1|+2r=2a,即|PF1|=2(a-r)
连结OA,由三角形中位线定理,知
|OA|=
故以PF2为直径的圆必和以长轴为直径的圆相内切.
评注 运用椭圆的定义结合三角形中位线定理,使题目得证.
例2 设P是椭圆
(a>b>0)上的一点,F1、F2是椭圆的焦点,且∠F1PF2=90°,求证:椭圆的率心率e≥
证明 ∵P是椭圆上的点,F1、F2是焦点,由椭圆的定义,得|PF1|+|PF2|=2a ①
在Rt△F1PF2中,
由①2,得
Tag:高三数学教学设计,高三数学教学设计方案,教学设计 - 数学教学设计 - 高三数学教学设计