高三数学数列测试题
[07-25 14:24:29] 来源:http://www.89xue.com 高三数学学习方法 阅读:9542次
摘要:解析:设第n行的各数之和等于2 0092,则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.答案:1 005三、解答题:本大题共6小题,共70分.17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.(1)求证:{bn}是等比数列,并求bn;(2)求通项an并求{an}的前n项和Sn.解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,∴{bn}是等比数列.∵b1=a1-2=-32。
高三数学数列测试题,标签:高三数学,http://www.89xue.com
解析:设第n行的各数之和等于2 0092,
则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.
故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.
答案:1 005
三、解答题:本大题共6小题,共70分.
17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.
(1)求证:{bn}是等比数列,并求bn;
(2)求通项an并求{an}的前n项和Sn.
解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,
∴{bn}是等比数列.
∵b1=a1-2=-32,
∴bn=b1qn-1=-32×12n-1=-32n.
(2)an=bn+2=-32n+2,
Sn=a1+a2+…+an
=-32+2+-322+2+-323+2+…+-32n+2
=-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.
18.(12分)若数列{an}的前n项和Sn=2n.
(1)求{an}的通项公式;
(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=an•bnn,求数列{cn}的通项公式及其前n项和Tn.
解析:(1)由题意Sn=2n,
得Sn-1=2n-1(n≥2),
两式相减,得an=2n-2n-1=2n-1(n≥2).
当n=1时,21-1=1≠S1=a1=2.
∴an=2 (n=1),2n-1 (n≥2).
(2)∵bn+1=bn+(2n-1),
∴b2-b1=1,
b3-b2=3,
b4-b3=5,
…
bn-bn-1=2n-3.
以上各式相加,得
bn-b1=1+3+5+…+(2n-3)
=(n-1)(1+2n-3)2=(n-1)2.
∵b1=-1,∴bn=n2-2n,
∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),
∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,
∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.
∴-Tn=2+22+23+…+2n-1-(n-2)×2n
=2(1-2n-1)1-2-(n-2)×2n
=2n-2-(n-2)×2n
=-2-(n-3)×2n.
∴Tn=2+(n-3)×2n.
19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.
解析:(1)依题意,得
3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.
∴an=a1+(n-1)d=3+2(n-1)=2n+1,
即an=2n+1.
(2)由已知,得bn=a2n=2×2n+1=2n+1+1,
∴Tn=b1+b2+…+bn
=(22+1)+(23+1)+…+(2n+1+1)
=4(1-2n)1-2+n=2n+2-4+n.
20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.
(1)证明:当b=2时,{an-n•2n-1}是等比数列;
(2)求通项an. 新 课 标 第 一 网
解析:由题意知,a1=2,且ban-2n=(b-1)Sn,
ban+1-2n+1=(b-1)Sn+1,
两式相减,得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)当b=2时,由①知,an+1=2an+2n.
于是an+1-(n+1)•2n=2an+2n-(n+1)•2n
=2an-n•2n-1.
又a1- 1•20=1≠0,
∴{an-n•2n-1}是首项为1,公比为2的等比数列.
(2)当b=2时,
由(1)知,an-n•2n-1=2n-1,即an=(n+1)•2n-1
当b≠2时,由①得
an +1-12-b•2n+1=ban+2n-12-b•2n+1=ban-b2-b•2n
=ban-12-b•2n,
因此an+1-12-b•2n+1=ban-12-b•2n=2(1-b)2-b•bn.
得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.
21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超
解析:设第n行的各数之和等于2 0092,
则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.
故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.
答案:1 005
三、解答题:本大题共6小题,共70分.
17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.
(1)求证:{bn}是等比数列,并求bn;
(2)求通项an并求{an}的前n项和Sn.
解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,
∴{bn}是等比数列.
∵b1=a1-2=-32,
∴bn=b1qn-1=-32×12n-1=-32n.
(2)an=bn+2=-32n+2,
Sn=a1+a2+…+an
=-32+2+-322+2+-323+2+…+-32n+2
=-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.
18.(12分)若数列{an}的前n项和Sn=2n.
(1)求{an}的通项公式;
(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=an•bnn,求数列{cn}的通项公式及其前n项和Tn.
解析:(1)由题意Sn=2n,
得Sn-1=2n-1(n≥2),
两式相减,得an=2n-2n-1=2n-1(n≥2).
当n=1时,21-1=1≠S1=a1=2.
∴an=2 (n=1),2n-1 (n≥2).
(2)∵bn+1=bn+(2n-1),
∴b2-b1=1,
b3-b2=3,
b4-b3=5,
…
bn-bn-1=2n-3.
以上各式相加,得
bn-b1=1+3+5+…+(2n-3)
=(n-1)(1+2n-3)2=(n-1)2.
∵b1=-1,∴bn=n2-2n,
∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),
∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,
∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.
∴-Tn=2+22+23+…+2n-1-(n-2)×2n
=2(1-2n-1)1-2-(n-2)×2n
=2n-2-(n-2)×2n
=-2-(n-3)×2n.
∴Tn=2+(n-3)×2n.
19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.
解析:(1)依题意,得
3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.
∴an=a1+(n-1)d=3+2(n-1)=2n+1,
即an=2n+1.
(2)由已知,得bn=a2n=2×2n+1=2n+1+1,
∴Tn=b1+b2+…+bn
=(22+1)+(23+1)+…+(2n+1+1)
=4(1-2n)1-2+n=2n+2-4+n.
20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.
(1)证明:当b=2时,{an-n•2n-1}是等比数列;
(2)求通项an. 新 课 标 第 一 网
解析:由题意知,a1=2,且ban-2n=(b-1)Sn,
ban+1-2n+1=(b-1)Sn+1,
两式相减,得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)当b=2时,由①知,an+1=2an+2n.
于是an+1-(n+1)•2n=2an+2n-(n+1)•2n
=2an-n•2n-1.
又a1- 1•20=1≠0,
∴{an-n•2n-1}是首项为1,公比为2的等比数列.
(2)当b=2时,
由(1)知,an-n•2n-1=2n-1,即an=(n+1)•2n-1
当b≠2时,由①得
an +1-12-b•2n+1=ban+2n-12-b•2n+1=ban-b2-b•2n
=ban-12-b•2n,
因此an+1-12-b•2n+1=ban-12-b•2n=2(1-b)2-b•bn.
得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.
21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超
Tag:高三数学学习方法,高三数学,学习方法 - 高三学习方法 - 高三数学学习方法
上一篇:高三数学集合与常用逻辑用语测试题