用户名: 密码: 企业 个人
当前位置:89学习网教育资料学习方法高三学习方法高三数学学习方法高三数学三角函数、解三角形训练题» 正文

高三数学三角函数、解三角形训练题

[07-25 14:24:38]   来源:http://www.89xue.com  高三数学学习方法   阅读:9125
摘要:而-π2<φ<π2,则φ=π3.∴函数f(x)的表达式为f(x)=sin2x+π3.(2)由f(α)+fα-π3=2425,得sin2α+π3+sin2α-π3=2425,化简,得sin2α=2425.∴(sinα+cosα)2=1+sin2α=4925.由于0 <α<π,则0<2α<2π,但sin2α=2425>0,则0<2α<π,(此括号内不是文章内容,来自学习方法。
高三数学三角函数、解三角形训练题,标签:高三数学,http://www.89xue.com
而-π2<φ<π2,则φ=π3.
∴函数f(x)的表达式为f(x)=sin2x+π3.
(2)由f(α)+fα-π3=2425,得
sin2α+π3+sin2α-π3=2425,化简,得sin2α=2425.
∴(sinα+cosα)2=1+sin2α=4925.
由于0 <α<π,则0<2α<2π,
但sin2α=2425>0,则0<2α<π,(此括号内不是文章内容,来自学习方法网,阅读请跳过),即α为锐角,
从而sinα+cosα>0,因此sinα+cosα=75.
20.(12分)在△ABC中,内角A、B、C的对边分别为a、b、c,且bcosC=3acosB-ccosB.
(1)求cosB的值.
(2)若BA→•BC→=2,b=22,求a 和c.
解析:(1)△ABC中,∵bcosC=3acosB-ccosB,
由正弦定理,得sinB•cosC=3sinAcosB-sinCco sB,
∴sinBcosC+sinCcosB=3sinAcosB,
∴sin(B+C)=sinA=3sinAcosB.
∵sinA≠0,∴cosB=13.
(2)∵BA→•BC→=ac•cosB= 13ac=2,∴ac=6.
∵b2=8=a2+c2-2accosB=a2+c2-4,
∴a2+c2=12,∴a2-2ac+c2=0,
即(a-c)2=0,∴a=c=6.
21.(12分)已知△ABC是半径为R的圆的内接三角形,且2R(sin2A-sin2C)=(2a-b)sinB.
(1)求角C;
(2)试求△ABC面积S的最大值.
解析:(1)由2R(sin2A-sin2C)=(2a-b)sinB,
两边同乘以2R,得
(2RsinA)2-(2RsinC)2=(2a-b)2RsinB,
根据正弦定理,得a=2RsinA,b=2RsinB,c=2RsinC,
∴a2-c2=(2a-b)b,即a2+b2-c2=2ab.
再由余弦定理,得cosC=a2+b2-c22ab=22,
又0<C<π,∴C=π4.
(2)∵C=π4,∴A+B=3π4.
S=12absinC=24(2RsinA)(2RsinB)=2R2sinAsinB
=2R2sinAsin34π-A=22R2sin2A-π4+12R2,
∴当2A-π4=π2,即A=38π时,
S有最大值12+22R2.
22.(12分)如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道.赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0),x∈[0,4]的图像,且图像的最高点为S(3,23);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P两点间的距离;
(2)应如何设计,才能使折线段赛道MNP最长?
解析:方法一:
(1)依题意,


故NP+MN=1033sinθ+1033sin(60°-θ)
=103312sinθ+32cosθ
=1033sin(θ+60°).
∵0°<θ<60°,∴当θ=30°时,折线段赛道MNP最长.
即将∠PMN设计为30°时,折线段赛道MNP最长.
方法二:(1)同方法一;
(2)在△MNP中,∠MNP=120°,MP=5,
由余弦定理,得
MN2+NP2-2MN•NP•cos∠MNP=MP2,
即MN2+NP2+MN•NP=25.
故(MN+NP)2-25=MN•NP≤MN+NP22,
从而34(MN+NP)2≤25,即MN+NP≤1033,
当且仅当MN=NP时等号成立.
即设计为MN=NP时,折线段赛道MNP最长.

上一页  [1] [2] [3] [4] 


Tag:高三数学学习方法高三数学学习方法 - 高三学习方法 - 高三数学学习方法