用列举法求概率教案
[04-02 04:19:18] 来源:http://www.89xue.com 九年级数学教学设计 阅读:9700次
摘要: (3)小明和小亮做转转盘的游戏,规则是:两人轮流转转盘,指向红色,小明胜;指向黄色小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。 教师组织学生分析本问题,运用列举法求其概率: 学生思考、讨论、交流: (1)是否符合等可能事件的两个特点? (2)怎样叙述? 教师介绍解题要求、步骤。 例1 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。 (1)点数为2只有1种结果,P(点数为2); (2)点数是奇数有3种可能,即点数为。
用列举法求概率教案,标签:九年级数学教学设计方案,http://www.89xue.com
(3)小明和小亮做转转盘的游戏,规则是:两人轮流转转盘,指向红色,小明胜;指向黄色小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
教师组织学生分析本问题,运用列举法求其概率:
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
教师介绍解题要求、步骤。
例1 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)点数为2只有1种结果,P(点数为2);
(2)点数是奇数有3种可能,即点数为1,3,5,P(点数是奇数);
(3)点数大于2且不大于5有3种可能,即3,4,5,P(点数大于2且不大于5).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例1变式 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A);
(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种。他第六次掷得点数2(记为事件B)有1种结果,因此P(B).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
鼓励学生解答:
例2解:一共有7个等可能的结果,且这7个结果发生的可能性相等,
(1)指向红色有3个结果, P(指向红色)=_____ ;
(2)指向红色或黄色一共有5种等可能的结果,P(指向红色或黄色)=_______;
(3)不指向红色有4种等可能的结果,P( 不指向红色)= ________。
引导学生分析:
图中两个扇形的圆心角不相等,某个扇形停在指针所指的位置的可能性就不相等?怎么办?
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例2变式 解:把黄色扇形平均分成两份,这样三个扇形的圆心角相等,某个扇形停在指针所指的位置的可能性就相等了,因而共有3种等可能的结果,
(1)指向红色有1种结果, P(指向红色)=_____;
(2)指向黄色有2种可能的结果,P(指向黄色)=_______。
(3)把黄色扇形平均分成两份,小明胜(记为事件A)共有1种结果,小亮胜(记为事件B)共有2种结果,
P(A),
P(B).
∵P(A)<P(B),
∴这样的游戏规则不公平。
www.89xue.com 可以设计如下的规则:两人轮流转转盘,指向红色,小明胜,小明得2分;指向红色,小亮胜,小亮得1分,最后按得分多少决定输赢。
还可以设计怎样的规则?
因为此时P(A)×2=P(B)×1,即两人平均每次得分相同。
在本次活动中,教师应重点关注:
(1)学生语言的规范性;
(2)学生的应用意识,模仿能力;
(3)学生在学习中发表个人见解的勇气。
(4)学生自主探究、合作交流意识。
通过对例1、例2的讨论探究,初步掌握用列举法求概率。
通过对例题变式的分析,激发学生学习学习欲望,进一步掌握用列举法求概率,体会数学的应用价值,。
(3)小明和小亮做转转盘的游戏,规则是:两人轮流转转盘,指向红色,小明胜;指向黄色小亮胜,分别求出小明胜和小亮胜的概率;你认为这样的游戏规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
教师组织学生分析本问题,运用列举法求其概率:
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
教师介绍解题要求、步骤。
例1 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)点数为2只有1种结果,P(点数为2);
(2)点数是奇数有3种可能,即点数为1,3,5,P(点数是奇数);
(3)点数大于2且不大于5有3种可能,即3,4,5,P(点数大于2且不大于5).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例1变式 解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A);
(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种。他第六次掷得点数2(记为事件B)有1种结果,因此P(B).
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
鼓励学生解答:
例2解:一共有7个等可能的结果,且这7个结果发生的可能性相等,
(1)指向红色有3个结果, P(指向红色)=_____ ;
(2)指向红色或黄色一共有5种等可能的结果,P(指向红色或黄色)=_______;
(3)不指向红色有4种等可能的结果,P( 不指向红色)= ________。
引导学生分析:
图中两个扇形的圆心角不相等,某个扇形停在指针所指的位置的可能性就不相等?怎么办?
学生思考、讨论、交流:
(1)是否符合等可能事件的两个特点?
(2)怎样叙述?
学生试着解决变式题。
例2变式 解:把黄色扇形平均分成两份,这样三个扇形的圆心角相等,某个扇形停在指针所指的位置的可能性就相等了,因而共有3种等可能的结果,
(1)指向红色有1种结果, P(指向红色)=_____;
(2)指向黄色有2种可能的结果,P(指向黄色)=_______。
(3)把黄色扇形平均分成两份,小明胜(记为事件A)共有1种结果,小亮胜(记为事件B)共有2种结果,
P(A),
P(B).
∵P(A)<P(B),
∴这样的游戏规则不公平。
www.89xue.com 可以设计如下的规则:两人轮流转转盘,指向红色,小明胜,小明得2分;指向红色,小亮胜,小亮得1分,最后按得分多少决定输赢。
还可以设计怎样的规则?
因为此时P(A)×2=P(B)×1,即两人平均每次得分相同。
在本次活动中,教师应重点关注:
(1)学生语言的规范性;
(2)学生的应用意识,模仿能力;
(3)学生在学习中发表个人见解的勇气。
(4)学生自主探究、合作交流意识。
通过对例1、例2的讨论探究,初步掌握用列举法求概率。
通过对例题变式的分析,激发学生学习学习欲望,进一步掌握用列举法求概率,体会数学的应用价值,。
Tag:九年级数学教学设计,九年级数学教学设计方案,教学设计 - 数学教学设计 - 九年级数学教学设计
上一篇:《圆周角的性质》教学案例